{"title":"稳健的交互检测器:道路寿命分析案例","authors":"Zehua Zhang , Yongze Song , Lalinda Karunaratne , Peng Wu","doi":"10.1016/j.spasta.2024.100814","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial stratified heterogeneity, revealing the disparity mechanisms across spatial strata, can be effectively quantified using the geographical detector (GD). GD requires reasonable spatial discretization strategies to investigate the spatial association between the target variable and numerical independent variables. In previous studies, the Robust Geographical Detector (RGD) optimized spatial strata for examining the power of determinants (PD) of individual variables, which demonstrate more robust spatial discretization than other models. However, the GD's interaction detector that explores PD of the interaction of two variables still needs to be enhanced by the robust spatial discretization. This study develops a Robust Interaction Detector (RID), an improved interaction detector, using change detection algorithms for the robust spatial stratified heterogeneity analysis with multiple explanatory variables. RID is applied in a road life expectancy analysis in Western Australia. Results show that RID presents higher PD values than previous GD models, ensuring the growth of PD value with more spatial strata. The RID model indicates that the interactions between various transport variables and elevation are strongly associated with road life expectancy from the perspective of spatial patterns. The developed RID model provides significant potential for enhanced geospatial factor analysis across diverse fields.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675324000058/pdfft?md5=f61d206ff82268fb072a2711dc2fed1e&pid=1-s2.0-S2211675324000058-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Robust interaction detector: A case of road life expectancy analysis\",\"authors\":\"Zehua Zhang , Yongze Song , Lalinda Karunaratne , Peng Wu\",\"doi\":\"10.1016/j.spasta.2024.100814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatial stratified heterogeneity, revealing the disparity mechanisms across spatial strata, can be effectively quantified using the geographical detector (GD). GD requires reasonable spatial discretization strategies to investigate the spatial association between the target variable and numerical independent variables. In previous studies, the Robust Geographical Detector (RGD) optimized spatial strata for examining the power of determinants (PD) of individual variables, which demonstrate more robust spatial discretization than other models. However, the GD's interaction detector that explores PD of the interaction of two variables still needs to be enhanced by the robust spatial discretization. This study develops a Robust Interaction Detector (RID), an improved interaction detector, using change detection algorithms for the robust spatial stratified heterogeneity analysis with multiple explanatory variables. RID is applied in a road life expectancy analysis in Western Australia. Results show that RID presents higher PD values than previous GD models, ensuring the growth of PD value with more spatial strata. The RID model indicates that the interactions between various transport variables and elevation are strongly associated with road life expectancy from the perspective of spatial patterns. The developed RID model provides significant potential for enhanced geospatial factor analysis across diverse fields.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000058/pdfft?md5=f61d206ff82268fb072a2711dc2fed1e&pid=1-s2.0-S2211675324000058-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000058\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000058","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Robust interaction detector: A case of road life expectancy analysis
Spatial stratified heterogeneity, revealing the disparity mechanisms across spatial strata, can be effectively quantified using the geographical detector (GD). GD requires reasonable spatial discretization strategies to investigate the spatial association between the target variable and numerical independent variables. In previous studies, the Robust Geographical Detector (RGD) optimized spatial strata for examining the power of determinants (PD) of individual variables, which demonstrate more robust spatial discretization than other models. However, the GD's interaction detector that explores PD of the interaction of two variables still needs to be enhanced by the robust spatial discretization. This study develops a Robust Interaction Detector (RID), an improved interaction detector, using change detection algorithms for the robust spatial stratified heterogeneity analysis with multiple explanatory variables. RID is applied in a road life expectancy analysis in Western Australia. Results show that RID presents higher PD values than previous GD models, ensuring the growth of PD value with more spatial strata. The RID model indicates that the interactions between various transport variables and elevation are strongly associated with road life expectancy from the perspective of spatial patterns. The developed RID model provides significant potential for enhanced geospatial factor analysis across diverse fields.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.