对可能存在误报的 gmm 进行速率自适应引导

IF 1 4区 经济学 Q3 ECONOMICS Econometric Theory Pub Date : 2024-01-22 DOI:10.1017/s0266466623000385
Han Hong, Jessie Li
{"title":"对可能存在误报的 gmm 进行速率自适应引导","authors":"Han Hong, Jessie Li","doi":"10.1017/s0266466623000385","DOIUrl":null,"url":null,"abstract":"<p>We consider inference for possibly misspecified GMM models based on possibly nonsmooth moment conditions. While it is well known that misspecified GMM estimators with smooth moments remain <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119130519665-0982:S0266466623000385:S0266466623000385_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\sqrt {n}$</span></span></img></span></span> consistent and asymptotically normal, globally misspecified nonsmooth GMM estimators are <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119130519665-0982:S0266466623000385:S0266466623000385_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$n^{1/3}$</span></span></img></span></span> consistent when either the weighting matrix is fixed or when the weighting matrix is estimated at the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119130519665-0982:S0266466623000385:S0266466623000385_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$n^{1/3}$</span></span></img></span></span> rate or faster. Because the estimator’s nonstandard asymptotic distribution cannot be consistently estimated using the standard bootstrap, we propose an alternative rate-adaptive bootstrap procedure that consistently estimates the asymptotic distribution regardless of whether the GMM estimator is smooth or nonsmooth, correctly or incorrectly specified. Monte Carlo simulations for the smooth and nonsmooth cases confirm that our rate-adaptive bootstrap confidence intervals exhibit empirical coverage close to the nominal level.</p>","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RATE-ADAPTIVE BOOTSTRAP FOR POSSIBLY MISSPECIFIED GMM\",\"authors\":\"Han Hong, Jessie Li\",\"doi\":\"10.1017/s0266466623000385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider inference for possibly misspecified GMM models based on possibly nonsmooth moment conditions. While it is well known that misspecified GMM estimators with smooth moments remain <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119130519665-0982:S0266466623000385:S0266466623000385_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\sqrt {n}$</span></span></img></span></span> consistent and asymptotically normal, globally misspecified nonsmooth GMM estimators are <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119130519665-0982:S0266466623000385:S0266466623000385_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n^{1/3}$</span></span></img></span></span> consistent when either the weighting matrix is fixed or when the weighting matrix is estimated at the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240119130519665-0982:S0266466623000385:S0266466623000385_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n^{1/3}$</span></span></img></span></span> rate or faster. Because the estimator’s nonstandard asymptotic distribution cannot be consistently estimated using the standard bootstrap, we propose an alternative rate-adaptive bootstrap procedure that consistently estimates the asymptotic distribution regardless of whether the GMM estimator is smooth or nonsmooth, correctly or incorrectly specified. Monte Carlo simulations for the smooth and nonsmooth cases confirm that our rate-adaptive bootstrap confidence intervals exhibit empirical coverage close to the nominal level.</p>\",\"PeriodicalId\":49275,\"journal\":{\"name\":\"Econometric Theory\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Theory\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/s0266466623000385\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s0266466623000385","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是基于可能非光滑矩条件的可能失范 GMM 模型的推断。众所周知,具有平滑矩的失范 GMM 估计数保持 $\sqrt {n}$ 一致且渐近正态,而当加权矩阵固定或加权矩阵以 $n^{1/3}$ 或更快的速度估计时,全局失范非平滑 GMM 估计数保持 $n^{1/3}$ 一致。由于估计器的非标准渐近分布无法用标准自举法进行一致估计,我们提出了另一种速率自适应自举程序,无论 GMM 估计器是平滑还是非平滑、指定正确还是非正确,该程序都能一致估计渐近分布。对平滑和非平滑情况的蒙特卡罗模拟证实,我们的速率自适应引导置信区间显示出接近名义水平的经验覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RATE-ADAPTIVE BOOTSTRAP FOR POSSIBLY MISSPECIFIED GMM

We consider inference for possibly misspecified GMM models based on possibly nonsmooth moment conditions. While it is well known that misspecified GMM estimators with smooth moments remain $\sqrt {n}$ consistent and asymptotically normal, globally misspecified nonsmooth GMM estimators are $n^{1/3}$ consistent when either the weighting matrix is fixed or when the weighting matrix is estimated at the $n^{1/3}$ rate or faster. Because the estimator’s nonstandard asymptotic distribution cannot be consistently estimated using the standard bootstrap, we propose an alternative rate-adaptive bootstrap procedure that consistently estimates the asymptotic distribution regardless of whether the GMM estimator is smooth or nonsmooth, correctly or incorrectly specified. Monte Carlo simulations for the smooth and nonsmooth cases confirm that our rate-adaptive bootstrap confidence intervals exhibit empirical coverage close to the nominal level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Theory
Econometric Theory MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.
期刊最新文献
INFERENCE IN MILDLY EXPLOSIVE AUTOREGRESSIONS UNDER UNCONDITIONAL HETEROSKEDASTICITY EFFICIENCY IN ESTIMATION UNDER MONOTONIC ATTRITION WELFARE ANALYSIS VIA MARGINAL TREATMENT EFFECTS APPLICATIONS OF FUNCTIONAL DEPENDENCE TO SPATIAL ECONOMETRICS IDENTIFICATION AND STATISTICAL DECISION THEORY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1