Prabhat Ranjan Prem, P. S. Ambily, Shankar Kumar, Swapnil Balasaheb Ghodke
{"title":"预测 3D 打印混凝土结构可建性的理论模型","authors":"Prabhat Ranjan Prem, P. S. Ambily, Shankar Kumar, Swapnil Balasaheb Ghodke","doi":"10.1007/s11043-024-09666-8","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional concrete printing is a transformative technology ushering in revolutionary architectural design and construction automation changes. With recent advancements of this technology, a notable absence of theoretical models predicting structural buildability is required. This investigation aims to bridge this knowledge gap by introducing an innovative theoretical model for estimating the total number of layers printed by a concrete 3D printer. This proposed model considers material behavior, building rate, and failure criteria. The material properties are depicted by modeling structural buildability in two cases, (i) bilinear and (ii) exponential. The buildability is characterized by three subcases, namely (i) constant, (ii) increasing, and (iii) decreasing building rates. These subcases hinge on printing velocity, treated as a function of time. Furthermore, the failure modes of 3D printable concrete structures are delineated based on (i) the Mohr–Coulomb theory and (ii) elastic and plastic failure criteria. Additionally, a strength-correction factor is employed to consider the confinement effect of the printed layer. The ultimate expression of the proposed model embodies an exponential approach to gauging the structural buildability of the printed structures. The study encompasses model validation and extensive parametric analysis to scrutinize the impact of printing velocity, structuration rate, printing path, density, and yield stress.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2661 - 2679"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A theoretical model to predict the structural buildability of 3D printable concrete\",\"authors\":\"Prabhat Ranjan Prem, P. S. Ambily, Shankar Kumar, Swapnil Balasaheb Ghodke\",\"doi\":\"10.1007/s11043-024-09666-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three-dimensional concrete printing is a transformative technology ushering in revolutionary architectural design and construction automation changes. With recent advancements of this technology, a notable absence of theoretical models predicting structural buildability is required. This investigation aims to bridge this knowledge gap by introducing an innovative theoretical model for estimating the total number of layers printed by a concrete 3D printer. This proposed model considers material behavior, building rate, and failure criteria. The material properties are depicted by modeling structural buildability in two cases, (i) bilinear and (ii) exponential. The buildability is characterized by three subcases, namely (i) constant, (ii) increasing, and (iii) decreasing building rates. These subcases hinge on printing velocity, treated as a function of time. Furthermore, the failure modes of 3D printable concrete structures are delineated based on (i) the Mohr–Coulomb theory and (ii) elastic and plastic failure criteria. Additionally, a strength-correction factor is employed to consider the confinement effect of the printed layer. The ultimate expression of the proposed model embodies an exponential approach to gauging the structural buildability of the printed structures. The study encompasses model validation and extensive parametric analysis to scrutinize the impact of printing velocity, structuration rate, printing path, density, and yield stress.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"28 4\",\"pages\":\"2661 - 2679\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-024-09666-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09666-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
三维混凝土打印是一项变革性技术,将带来建筑设计和施工自动化的革命性变化。随着该技术的不断发展,预测结构可建性的理论模型明显不足。本研究旨在通过引入一个创新的理论模型来估算混凝土三维打印机打印的总层数,从而弥补这一知识空白。该模型考虑了材料行为、建造率和失效标准。材料特性是通过在两种情况下(i)双线性和(ii)指数建模结构可建性来描述的。可构建性有三种子情况,即 (i) 恒定、(ii) 增加和 (iii) 减少构建率。这些子情况取决于作为时间函数的打印速度。此外,还根据 (i) 莫尔-库仑理论和 (ii) 弹性和塑性失效标准划分了三维可打印混凝土结构的失效模式。此外,还采用了强度校正因子来考虑打印层的约束效应。建议模型的最终表达体现了一种指数方法,用于衡量印刷结构的可建性。研究包括模型验证和广泛的参数分析,以仔细研究印刷速度、结构化率、印刷路径、密度和屈服应力的影响。
A theoretical model to predict the structural buildability of 3D printable concrete
Three-dimensional concrete printing is a transformative technology ushering in revolutionary architectural design and construction automation changes. With recent advancements of this technology, a notable absence of theoretical models predicting structural buildability is required. This investigation aims to bridge this knowledge gap by introducing an innovative theoretical model for estimating the total number of layers printed by a concrete 3D printer. This proposed model considers material behavior, building rate, and failure criteria. The material properties are depicted by modeling structural buildability in two cases, (i) bilinear and (ii) exponential. The buildability is characterized by three subcases, namely (i) constant, (ii) increasing, and (iii) decreasing building rates. These subcases hinge on printing velocity, treated as a function of time. Furthermore, the failure modes of 3D printable concrete structures are delineated based on (i) the Mohr–Coulomb theory and (ii) elastic and plastic failure criteria. Additionally, a strength-correction factor is employed to consider the confinement effect of the printed layer. The ultimate expression of the proposed model embodies an exponential approach to gauging the structural buildability of the printed structures. The study encompasses model validation and extensive parametric analysis to scrutinize the impact of printing velocity, structuration rate, printing path, density, and yield stress.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.