用于扩展交互振荡器的片束枪的设计与实验

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Infrared, Millimeter, and Terahertz Waves Pub Date : 2024-01-29 DOI:10.1007/s10762-024-00970-5
Tianzhong Zhang, Xinjian Niu, Yinghui Liu, Lin Xu, Guo Guo, Jing Zeng, Jin Xu
{"title":"用于扩展交互振荡器的片束枪的设计与实验","authors":"Tianzhong Zhang, Xinjian Niu, Yinghui Liu, Lin Xu, Guo Guo, Jing Zeng, Jin Xu","doi":"10.1007/s10762-024-00970-5","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the design and experiment results for a W-band sheet beam electron gun of the extended interaction oscillator (EIO). A 3D simulation has been performed, and then, the structure parameters of the electron gun have been optimized. The simulation results show that the beam waist (BW) and transmission ratio are extremely sensitive to the distance between the cathode and the focus electrode. By observing the beam waist and the beam range, the maximum beam range is up to 46 mm, which is measured at the beginning of the beam-wave interaction cavity. In addition, the thickness of the beam waist decreases rapidly when the cathode is moved along the positive axial direction by 0.03 mm. Moreover, the voltage on the focus electrode has a significant impact on the beam trajectory. At last, by considering the deviation, experiment results show that the transmission is improved to 98%.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Experiment of a Sheet Beam Gun for Extended Interaction Oscillator\",\"authors\":\"Tianzhong Zhang, Xinjian Niu, Yinghui Liu, Lin Xu, Guo Guo, Jing Zeng, Jin Xu\",\"doi\":\"10.1007/s10762-024-00970-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents the design and experiment results for a W-band sheet beam electron gun of the extended interaction oscillator (EIO). A 3D simulation has been performed, and then, the structure parameters of the electron gun have been optimized. The simulation results show that the beam waist (BW) and transmission ratio are extremely sensitive to the distance between the cathode and the focus electrode. By observing the beam waist and the beam range, the maximum beam range is up to 46 mm, which is measured at the beginning of the beam-wave interaction cavity. In addition, the thickness of the beam waist decreases rapidly when the cathode is moved along the positive axial direction by 0.03 mm. Moreover, the voltage on the focus electrode has a significant impact on the beam trajectory. At last, by considering the deviation, experiment results show that the transmission is improved to 98%.</p>\",\"PeriodicalId\":16181,\"journal\":{\"name\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10762-024-00970-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00970-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了扩展相互作用振荡器(EIO)W 波段片束电子枪的设计和实验结果。首先进行了三维模拟,然后对电子枪的结构参数进行了优化。模拟结果表明,束腰(BW)和透射比对阴极和聚焦电极之间的距离极为敏感。通过观察束腰和束程,最大束程可达 46 毫米,这是在束波相互作用腔的起始处测得的。此外,当阴极沿正轴向移动 0.03 毫米时,束腰的厚度迅速减小。此外,聚焦电极上的电压对光束轨迹也有很大影响。最后,考虑到偏差,实验结果表明透射率提高到了 98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Experiment of a Sheet Beam Gun for Extended Interaction Oscillator

This paper presents the design and experiment results for a W-band sheet beam electron gun of the extended interaction oscillator (EIO). A 3D simulation has been performed, and then, the structure parameters of the electron gun have been optimized. The simulation results show that the beam waist (BW) and transmission ratio are extremely sensitive to the distance between the cathode and the focus electrode. By observing the beam waist and the beam range, the maximum beam range is up to 46 mm, which is measured at the beginning of the beam-wave interaction cavity. In addition, the thickness of the beam waist decreases rapidly when the cathode is moved along the positive axial direction by 0.03 mm. Moreover, the voltage on the focus electrode has a significant impact on the beam trajectory. At last, by considering the deviation, experiment results show that the transmission is improved to 98%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Infrared, Millimeter, and Terahertz Waves
Journal of Infrared, Millimeter, and Terahertz Waves 工程技术-工程:电子与电气
CiteScore
6.20
自引率
6.90%
发文量
51
审稿时长
3 months
期刊介绍: The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications. Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms). Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.
期刊最新文献
Characterization of Ultrathin Conductive Films Using a Simplified Approach for Terahertz Time-Domain Spectroscopic Ellipsometry A 60-GHz Out-of-Phase Power Divider with WR-15 Standard Interface Based on Trapped Printed Gap Waveguide Technology Advanced Data Processing of THz-Time Domain Spectroscopy Data with Sinusoidally Moving Delay Lines Hard Rock Absorption Measurements in the W-Band Performance Analysis of Novel Graphene Process Low-Noise Amplifier with Multi-stage Stagger-Tuned Approach over D-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1