{"title":"与位置无关的自适应无线电力传输:拓扑、建模和设计","authors":"David West, Jinqun Ge, Guoan Wang","doi":"10.1017/s1759078724000126","DOIUrl":null,"url":null,"abstract":"Wireless power transfer (WPT) is an emerging technology with many promising applications where transmitting power via wired connections is undesirable. However, near-field WPT between magnetically coupled inductors is highly susceptible to positional changes, with power transfer efficiency (PTE) suffering if the coils are misaligned. To combat this effect, many position-independent, self-adaptive, inductive WPT schemes have been developed. Recent work indicates that it is possible to passively achieve high PTE across the operating range with nonlinear capacitors. In this work, the functionality of nonlinear WPT circuits is investigated, and fundamental design equations are derived and validated. A simplified design procedure is proposed for the position-independent self-adaptive WPT using nonlinear capacitors, wherein the ideal capacitance is extracted for each coupling factor. The efficacy of the method is demonstrated with an experimental circuit. Future work in this area is also proposed.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"15 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Position-independent self-adaptive wireless power transfer: topology, modeling, and design\",\"authors\":\"David West, Jinqun Ge, Guoan Wang\",\"doi\":\"10.1017/s1759078724000126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless power transfer (WPT) is an emerging technology with many promising applications where transmitting power via wired connections is undesirable. However, near-field WPT between magnetically coupled inductors is highly susceptible to positional changes, with power transfer efficiency (PTE) suffering if the coils are misaligned. To combat this effect, many position-independent, self-adaptive, inductive WPT schemes have been developed. Recent work indicates that it is possible to passively achieve high PTE across the operating range with nonlinear capacitors. In this work, the functionality of nonlinear WPT circuits is investigated, and fundamental design equations are derived and validated. A simplified design procedure is proposed for the position-independent self-adaptive WPT using nonlinear capacitors, wherein the ideal capacitance is extracted for each coupling factor. The efficacy of the method is demonstrated with an experimental circuit. Future work in this area is also proposed.\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078724000126\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000126","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Position-independent self-adaptive wireless power transfer: topology, modeling, and design
Wireless power transfer (WPT) is an emerging technology with many promising applications where transmitting power via wired connections is undesirable. However, near-field WPT between magnetically coupled inductors is highly susceptible to positional changes, with power transfer efficiency (PTE) suffering if the coils are misaligned. To combat this effect, many position-independent, self-adaptive, inductive WPT schemes have been developed. Recent work indicates that it is possible to passively achieve high PTE across the operating range with nonlinear capacitors. In this work, the functionality of nonlinear WPT circuits is investigated, and fundamental design equations are derived and validated. A simplified design procedure is proposed for the position-independent self-adaptive WPT using nonlinear capacitors, wherein the ideal capacitance is extracted for each coupling factor. The efficacy of the method is demonstrated with an experimental circuit. Future work in this area is also proposed.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.