通过传递闭包检测加权复杂网络的群落

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Computing Pub Date : 2024-01-29 DOI:10.1007/s00607-023-01249-8
Ahmadi Hasan, Ahmad Kamal
{"title":"通过传递闭包检测加权复杂网络的群落","authors":"Ahmadi Hasan, Ahmad Kamal","doi":"10.1007/s00607-023-01249-8","DOIUrl":null,"url":null,"abstract":"<p>The K-means algorithm has been successfully applied to many complex network analysis problems. However, this method is sensitive to how the first cluster centers are chosen. It is possible to minimize superfluous runs by choosing the first cluster center in advance because each run produces a unique set of results. To overcome this issue, an algorithm for Community Detection based on Transitive Closure (CoDTC) has been introduced. In this algorithm, the initial cluster center is provided by degree centrality and T-transitive closure. The algorithm initializes with the calculation of the similarity relation matrix. Then, to avoid the limitation of sparse problems in complex network analysis, we offer the idea of transitive closure on weighted networks to solve the sparsity issue. This notion is based on imposing a t-norm inequality on the connection weights and providing a method to compute them. Finally, based on T-transitive closure, new cluster centers are calculated iteratively to avoid random selection of cluster centers. In this paper, we demonstrate the efficacy of the CoDTC approach on a diverse range of real and artificial networks, encompassing both big and small communities.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"398 1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Community detection of weighted complex networks via transitive closure\",\"authors\":\"Ahmadi Hasan, Ahmad Kamal\",\"doi\":\"10.1007/s00607-023-01249-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The K-means algorithm has been successfully applied to many complex network analysis problems. However, this method is sensitive to how the first cluster centers are chosen. It is possible to minimize superfluous runs by choosing the first cluster center in advance because each run produces a unique set of results. To overcome this issue, an algorithm for Community Detection based on Transitive Closure (CoDTC) has been introduced. In this algorithm, the initial cluster center is provided by degree centrality and T-transitive closure. The algorithm initializes with the calculation of the similarity relation matrix. Then, to avoid the limitation of sparse problems in complex network analysis, we offer the idea of transitive closure on weighted networks to solve the sparsity issue. This notion is based on imposing a t-norm inequality on the connection weights and providing a method to compute them. Finally, based on T-transitive closure, new cluster centers are calculated iteratively to avoid random selection of cluster centers. In this paper, we demonstrate the efficacy of the CoDTC approach on a diverse range of real and artificial networks, encompassing both big and small communities.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"398 1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-023-01249-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-023-01249-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

K-means 算法已成功应用于许多复杂的网络分析问题。不过,这种方法对如何选择第一个聚类中心很敏感。由于每次运行都会产生一组唯一的结果,因此可以通过提前选择第一个聚类中心来尽量减少多余的运行。为了克服这个问题,我们引入了一种基于 Transitive Closure 的群落检测算法(CoDTC)。在该算法中,初始聚类中心由度中心性和 T 传递闭合提供。该算法通过计算相似性关系矩阵进行初始化。然后,为了避免复杂网络分析中稀疏问题的限制,我们提出了在加权网络上进行传递封闭的想法,以解决稀疏问题。这一概念基于对连接权重施加 t-norm 不等式,并提供了一种计算方法。最后,在 T 传递闭合的基础上,迭代计算新的聚类中心,以避免随机选择聚类中心。在本文中,我们展示了 CoDTC 方法在各种真实和人工网络中的有效性,包括大型和小型社区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Community detection of weighted complex networks via transitive closure

The K-means algorithm has been successfully applied to many complex network analysis problems. However, this method is sensitive to how the first cluster centers are chosen. It is possible to minimize superfluous runs by choosing the first cluster center in advance because each run produces a unique set of results. To overcome this issue, an algorithm for Community Detection based on Transitive Closure (CoDTC) has been introduced. In this algorithm, the initial cluster center is provided by degree centrality and T-transitive closure. The algorithm initializes with the calculation of the similarity relation matrix. Then, to avoid the limitation of sparse problems in complex network analysis, we offer the idea of transitive closure on weighted networks to solve the sparsity issue. This notion is based on imposing a t-norm inequality on the connection weights and providing a method to compute them. Finally, based on T-transitive closure, new cluster centers are calculated iteratively to avoid random selection of cluster centers. In this paper, we demonstrate the efficacy of the CoDTC approach on a diverse range of real and artificial networks, encompassing both big and small communities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
期刊最新文献
Mapping and just-in-time traffic congestion mitigation for emergency vehicles in smart cities Fog intelligence for energy efficient management in smart street lamps Contextual authentication of users and devices using machine learning Multi-objective service composition optimization problem in IoT for agriculture 4.0 Robust evaluation of GPU compute instances for HPC and AI in the cloud: a TOPSIS approach with sensitivity, bootstrapping, and non-parametric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1