Jing Li, Feng Chen, Meixia Wang, Xiaolong Zhu, Ning He, Na Li, Haotian Zhu, Xiaoxiao Han
{"title":"动态培养中三维生物打印细胞支架的设计与优化","authors":"Jing Li, Feng Chen, Meixia Wang, Xiaolong Zhu, Ning He, Na Li, Haotian Zhu, Xiaoxiao Han","doi":"10.36922/ijb.1838","DOIUrl":null,"url":null,"abstract":"Light-based 3D printing enables the fabrication of biological scaffolds with high precision, versatility and biocompatibility, particularly the cell-laden scaffolds with architecturally complex geometric features. However, many bioprinted tissue scaffolds suffer from low cell viability due to insufficient oxygen and nutrient supply, which is heavily influenced by scaffold structure and cultivation conditions. Current practice relies mainly on resource-intensive trial-and-error methods to optimize scaffolds’ structures and cultivation parameters. In this study, we developed a comprehensive multi-physics model integrating fluid dynamics, oxygen mass transfer, cell oxygen consumption, and cell growth processes to capture cell growth behaviors in scaffolds, establishing a robust theoretical foundation for scaffold structure optimization. The modeling results showed that a large number of parameters, such as system inlet flow rate, geometric feature size, cell parameters, and material properties, significantly impact oxygen concentration and cell growth within the scaffold. A two-step optimization strategy is proposed in this paper and was applied to obtain optimal geometric parameters of channeled scaffolds to demonstrate the model’s effectiveness for scaffold optimization. The model can be employed for scaffolds with arbitrary shapes and various materials, facilitating the optimal design of sophisticated scaffolds for more advanced tissue engineering.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of 3D-bioprinted cell-laden scaffolds in dynamic culture\",\"authors\":\"Jing Li, Feng Chen, Meixia Wang, Xiaolong Zhu, Ning He, Na Li, Haotian Zhu, Xiaoxiao Han\",\"doi\":\"10.36922/ijb.1838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light-based 3D printing enables the fabrication of biological scaffolds with high precision, versatility and biocompatibility, particularly the cell-laden scaffolds with architecturally complex geometric features. However, many bioprinted tissue scaffolds suffer from low cell viability due to insufficient oxygen and nutrient supply, which is heavily influenced by scaffold structure and cultivation conditions. Current practice relies mainly on resource-intensive trial-and-error methods to optimize scaffolds’ structures and cultivation parameters. In this study, we developed a comprehensive multi-physics model integrating fluid dynamics, oxygen mass transfer, cell oxygen consumption, and cell growth processes to capture cell growth behaviors in scaffolds, establishing a robust theoretical foundation for scaffold structure optimization. The modeling results showed that a large number of parameters, such as system inlet flow rate, geometric feature size, cell parameters, and material properties, significantly impact oxygen concentration and cell growth within the scaffold. A two-step optimization strategy is proposed in this paper and was applied to obtain optimal geometric parameters of channeled scaffolds to demonstrate the model’s effectiveness for scaffold optimization. The model can be employed for scaffolds with arbitrary shapes and various materials, facilitating the optimal design of sophisticated scaffolds for more advanced tissue engineering.\",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.36922/ijb.1838\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.1838","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Design and optimization of 3D-bioprinted cell-laden scaffolds in dynamic culture
Light-based 3D printing enables the fabrication of biological scaffolds with high precision, versatility and biocompatibility, particularly the cell-laden scaffolds with architecturally complex geometric features. However, many bioprinted tissue scaffolds suffer from low cell viability due to insufficient oxygen and nutrient supply, which is heavily influenced by scaffold structure and cultivation conditions. Current practice relies mainly on resource-intensive trial-and-error methods to optimize scaffolds’ structures and cultivation parameters. In this study, we developed a comprehensive multi-physics model integrating fluid dynamics, oxygen mass transfer, cell oxygen consumption, and cell growth processes to capture cell growth behaviors in scaffolds, establishing a robust theoretical foundation for scaffold structure optimization. The modeling results showed that a large number of parameters, such as system inlet flow rate, geometric feature size, cell parameters, and material properties, significantly impact oxygen concentration and cell growth within the scaffold. A two-step optimization strategy is proposed in this paper and was applied to obtain optimal geometric parameters of channeled scaffolds to demonstrate the model’s effectiveness for scaffold optimization. The model can be employed for scaffolds with arbitrary shapes and various materials, facilitating the optimal design of sophisticated scaffolds for more advanced tissue engineering.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.