{"title":"OmDet:利用多模态检测网络进行大规模视觉语言多数据集预训练","authors":"Tiancheng Zhao, Peng Liu, Kyusong Lee","doi":"10.1049/cvi2.12268","DOIUrl":null,"url":null,"abstract":"<p>The advancement of object detection (OD) in open-vocabulary and open-world scenarios is a critical challenge in computer vision. OmDet, a novel language-aware object detection architecture and an innovative training mechanism that harnesses continual learning and multi-dataset vision-language pre-training is introduced. Leveraging natural language as a universal knowledge representation, OmDet accumulates “visual vocabularies” from diverse datasets, unifying the task as a language-conditioned detection framework. The multimodal detection network (MDN) overcomes the challenges of multi-dataset joint training and generalizes to numerous training datasets without manual label taxonomy merging. The authors demonstrate superior performance of OmDet over strong baselines in object detection in the wild, open-vocabulary detection, and phrase grounding, achieving state-of-the-art results. Ablation studies reveal the impact of scaling the pre-training visual vocabulary, indicating a promising direction for further expansion to larger datasets. The effectiveness of our deep fusion approach is underscored by its ability to learn jointly from multiple datasets, enhancing performance through knowledge sharing.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 5","pages":"626-639"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12268","citationCount":"0","resultStr":"{\"title\":\"OmDet: Large-scale vision-language multi-dataset pre-training with multimodal detection network\",\"authors\":\"Tiancheng Zhao, Peng Liu, Kyusong Lee\",\"doi\":\"10.1049/cvi2.12268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The advancement of object detection (OD) in open-vocabulary and open-world scenarios is a critical challenge in computer vision. OmDet, a novel language-aware object detection architecture and an innovative training mechanism that harnesses continual learning and multi-dataset vision-language pre-training is introduced. Leveraging natural language as a universal knowledge representation, OmDet accumulates “visual vocabularies” from diverse datasets, unifying the task as a language-conditioned detection framework. The multimodal detection network (MDN) overcomes the challenges of multi-dataset joint training and generalizes to numerous training datasets without manual label taxonomy merging. The authors demonstrate superior performance of OmDet over strong baselines in object detection in the wild, open-vocabulary detection, and phrase grounding, achieving state-of-the-art results. Ablation studies reveal the impact of scaling the pre-training visual vocabulary, indicating a promising direction for further expansion to larger datasets. The effectiveness of our deep fusion approach is underscored by its ability to learn jointly from multiple datasets, enhancing performance through knowledge sharing.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 5\",\"pages\":\"626-639\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12268\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12268\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12268","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
OmDet: Large-scale vision-language multi-dataset pre-training with multimodal detection network
The advancement of object detection (OD) in open-vocabulary and open-world scenarios is a critical challenge in computer vision. OmDet, a novel language-aware object detection architecture and an innovative training mechanism that harnesses continual learning and multi-dataset vision-language pre-training is introduced. Leveraging natural language as a universal knowledge representation, OmDet accumulates “visual vocabularies” from diverse datasets, unifying the task as a language-conditioned detection framework. The multimodal detection network (MDN) overcomes the challenges of multi-dataset joint training and generalizes to numerous training datasets without manual label taxonomy merging. The authors demonstrate superior performance of OmDet over strong baselines in object detection in the wild, open-vocabulary detection, and phrase grounding, achieving state-of-the-art results. Ablation studies reveal the impact of scaling the pre-training visual vocabulary, indicating a promising direction for further expansion to larger datasets. The effectiveness of our deep fusion approach is underscored by its ability to learn jointly from multiple datasets, enhancing performance through knowledge sharing.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf