利用 3D 打印微针颗粒改善维生素 C 的透皮给药,减轻皮肤光损伤

IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL International Journal of Bioprinting Pub Date : 2024-01-08 DOI:10.36922/ijb.1285
Li Zhang, Haofan Liu, Linghong Guo, Xuebing Jiang, Siyi Wang, Run Tian, Yiting Huang, Xian Jiang, Maling Gou
{"title":"利用 3D 打印微针颗粒改善维生素 C 的透皮给药,减轻皮肤光损伤","authors":"Li Zhang, Haofan Liu, Linghong Guo, Xuebing Jiang, Siyi Wang, Run Tian, Yiting Huang, Xian Jiang, Maling Gou","doi":"10.36922/ijb.1285","DOIUrl":null,"url":null,"abstract":"Skin photodamage is a common disease that can cause various skin problems, and vitamin C is frequently used as an antioxidant to protect the skin from photodamage. However, vitamin C is a charged and hydrophilic molecule, which decreases skin permeability. In this study, we developed a type of microneedle particles (MNPs) to enhance topical vitamin C delivery. The MNPs are millimeter-sized particles with micron-sized needle-like structures that can be rapidly and accurately fabricated through a digital light processing (DLP)-based micro-printing process. The mechanical properties of these MNPs are reliable for forming micropores across the stratum corneum in a painless manner. Following a topical application to the dorsal skin of mice, the MNPs increased the permeability of medications. The effectiveness of vitamin C in mitigating skin photodamage is significantly improved. In conclusion, this study presents micro-printing of MNPs for transdermal vitamin C delivery, which has potential applications in future treatment of skin photodamage.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the transdermal delivery of vitamin C by 3D-printed microneedle particles for alleviating skin photodamage\",\"authors\":\"Li Zhang, Haofan Liu, Linghong Guo, Xuebing Jiang, Siyi Wang, Run Tian, Yiting Huang, Xian Jiang, Maling Gou\",\"doi\":\"10.36922/ijb.1285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skin photodamage is a common disease that can cause various skin problems, and vitamin C is frequently used as an antioxidant to protect the skin from photodamage. However, vitamin C is a charged and hydrophilic molecule, which decreases skin permeability. In this study, we developed a type of microneedle particles (MNPs) to enhance topical vitamin C delivery. The MNPs are millimeter-sized particles with micron-sized needle-like structures that can be rapidly and accurately fabricated through a digital light processing (DLP)-based micro-printing process. The mechanical properties of these MNPs are reliable for forming micropores across the stratum corneum in a painless manner. Following a topical application to the dorsal skin of mice, the MNPs increased the permeability of medications. The effectiveness of vitamin C in mitigating skin photodamage is significantly improved. In conclusion, this study presents micro-printing of MNPs for transdermal vitamin C delivery, which has potential applications in future treatment of skin photodamage.\",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.36922/ijb.1285\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.1285","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

皮肤光损伤是一种常见疾病,可导致各种皮肤问题,维生素 C 经常被用作抗氧化剂,以保护皮肤免受光损伤。然而,维生素 C 是一种带电的亲水分子,会降低皮肤的渗透性。在这项研究中,我们开发了一种微针颗粒(MNPs)来增强维生素 C 的局部输送。MNPs 是一种具有微米级针状结构的毫米级颗粒,可通过基于数字光处理(DLP)的微打印工艺快速、准确地制造出来。这些 MNPs 的机械性能可靠,能以无痛方式在角质层形成微孔。在小鼠背侧皮肤局部使用后,MNPs 增加了药物的渗透性。维生素 C 在减轻皮肤光损伤方面的效果显著提高。总之,本研究介绍了用于透皮维生素 C 给药的 MNPs 微印刷技术,它在未来治疗皮肤光损伤方面具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the transdermal delivery of vitamin C by 3D-printed microneedle particles for alleviating skin photodamage
Skin photodamage is a common disease that can cause various skin problems, and vitamin C is frequently used as an antioxidant to protect the skin from photodamage. However, vitamin C is a charged and hydrophilic molecule, which decreases skin permeability. In this study, we developed a type of microneedle particles (MNPs) to enhance topical vitamin C delivery. The MNPs are millimeter-sized particles with micron-sized needle-like structures that can be rapidly and accurately fabricated through a digital light processing (DLP)-based micro-printing process. The mechanical properties of these MNPs are reliable for forming micropores across the stratum corneum in a painless manner. Following a topical application to the dorsal skin of mice, the MNPs increased the permeability of medications. The effectiveness of vitamin C in mitigating skin photodamage is significantly improved. In conclusion, this study presents micro-printing of MNPs for transdermal vitamin C delivery, which has potential applications in future treatment of skin photodamage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
4.80%
发文量
81
期刊介绍: The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.
期刊最新文献
Methacrylic anhydride-assisted one-step in-situ extrusion 3D bioprinting of collagen hydrogels for enhanced full-thickness skin regeneration Advancements in 3D bioprinting for nanoparticle evaluation: Techniques, models, and biological applications Experimental and numerical approaches for optimizing conjunction area design to enhance switching efficiency in single-nozzle multi-ink bioprinting systems Osteocytic PGE2 receptors EP2/4 signaling create a physiological osteogenic microenvironment in polycaprolactone 3D module Design and fabrication of anisotropic SiO2 gyroid bioscaffolds with tunable properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1