David Sawert, Pablo Vallejos, Frans Nyberg, Tomas Hurtig
{"title":"具有透明阴极和输出模式的相对论磁控管的建模与优化","authors":"David Sawert, Pablo Vallejos, Frans Nyberg, Tomas Hurtig","doi":"10.1017/s1759078724000151","DOIUrl":null,"url":null,"abstract":"<p>This paper outlines the results of particle-in-cell simulations of a relativistic magnetron with six cavities and a transparent cathode configuration. Excitation of the <span>π</span> mode in the interaction region was attained, which in turn led to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240131090415632-0900:S1759078724000151:S1759078724000151_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm{TE}_{11}$</span></span></img></span></span> mode emission of microwaves to the waveguide. This mode transformation was achieved with a non-symmetric diffraction output, consisting of four large and two small tapered cavities. Simulations were performed with a voltage across the anode-cathode gap varying from 164 to 356 kV, and axial magnetic field strengths between 0.24 and 0.34 T. Maximum efficiency of 37% was obtained with a peak output power of 590 MW, having a voltage of 261 kV and a magnetic field of 0.30 T. Furthermore, a frequency of 2.57 GHz and a rise time of microwaves at the waveguide of 15 ns were demonstrated. The electron leakage current was shown to decrease from ∼10<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240131090415632-0900:S1759078724000151:S1759078724000151_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\%$</span></span></img></span></span> to less than <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240131090415632-0900:S1759078724000151:S1759078724000151_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$1\\%$</span></span></img></span></span> when employing a longer interaction region, while still exhibiting good performance. Additionally, we show that there is an optimal range of voltages given a magnetic field, for which <span>π</span> mode excitation with high efficiency is attained.</p>","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"26 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and optimization of a relativistic magnetron with transparent cathode and output mode\",\"authors\":\"David Sawert, Pablo Vallejos, Frans Nyberg, Tomas Hurtig\",\"doi\":\"10.1017/s1759078724000151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper outlines the results of particle-in-cell simulations of a relativistic magnetron with six cavities and a transparent cathode configuration. Excitation of the <span>π</span> mode in the interaction region was attained, which in turn led to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240131090415632-0900:S1759078724000151:S1759078724000151_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\textrm{TE}_{11}$</span></span></img></span></span> mode emission of microwaves to the waveguide. This mode transformation was achieved with a non-symmetric diffraction output, consisting of four large and two small tapered cavities. Simulations were performed with a voltage across the anode-cathode gap varying from 164 to 356 kV, and axial magnetic field strengths between 0.24 and 0.34 T. Maximum efficiency of 37% was obtained with a peak output power of 590 MW, having a voltage of 261 kV and a magnetic field of 0.30 T. Furthermore, a frequency of 2.57 GHz and a rise time of microwaves at the waveguide of 15 ns were demonstrated. The electron leakage current was shown to decrease from ∼10<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240131090415632-0900:S1759078724000151:S1759078724000151_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\%$</span></span></img></span></span> to less than <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240131090415632-0900:S1759078724000151:S1759078724000151_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1\\\\%$</span></span></img></span></span> when employing a longer interaction region, while still exhibiting good performance. Additionally, we show that there is an optimal range of voltages given a magnetic field, for which <span>π</span> mode excitation with high efficiency is attained.</p>\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078724000151\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000151","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modeling and optimization of a relativistic magnetron with transparent cathode and output mode
This paper outlines the results of particle-in-cell simulations of a relativistic magnetron with six cavities and a transparent cathode configuration. Excitation of the π mode in the interaction region was attained, which in turn led to $\textrm{TE}_{11}$ mode emission of microwaves to the waveguide. This mode transformation was achieved with a non-symmetric diffraction output, consisting of four large and two small tapered cavities. Simulations were performed with a voltage across the anode-cathode gap varying from 164 to 356 kV, and axial magnetic field strengths between 0.24 and 0.34 T. Maximum efficiency of 37% was obtained with a peak output power of 590 MW, having a voltage of 261 kV and a magnetic field of 0.30 T. Furthermore, a frequency of 2.57 GHz and a rise time of microwaves at the waveguide of 15 ns were demonstrated. The electron leakage current was shown to decrease from ∼10$\%$ to less than $1\%$ when employing a longer interaction region, while still exhibiting good performance. Additionally, we show that there is an optimal range of voltages given a magnetic field, for which π mode excitation with high efficiency is attained.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.