通过质量守恒和物种损耗加权,利用神经网络取代化学动力学制表法

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Energy and AI Pub Date : 2024-01-30 DOI:10.1016/j.egyai.2024.100341
Franz M. Rohrhofer , Stefan Posch , Clemens Gößnitzer , José M. García-Oliver , Bernhard C. Geiger
{"title":"通过质量守恒和物种损耗加权,利用神经网络取代化学动力学制表法","authors":"Franz M. Rohrhofer ,&nbsp;Stefan Posch ,&nbsp;Clemens Gößnitzer ,&nbsp;José M. García-Oliver ,&nbsp;Bernhard C. Geiger","doi":"10.1016/j.egyai.2024.100341","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial Neural Networks (ANNs) have emerged as a powerful tool in combustion simulations to replace memory-intensive tabulation of integrated chemical kinetics. Complex reaction mechanisms, however, present a challenge for standard ANN approaches as modeling multiple species typically suffers from inaccurate predictions on minor species. This paper presents a novel ANN approach which can be applied on complex reaction mechanisms in tabular data form, and only involves training a single ANN for a complete reaction mechanism. The approach incorporates a network architecture that automatically conserves mass and employs a particular loss weighting based on species depletion. Both modifications are used to improve the overall ANN performance and individual prediction accuracies, especially for minor species mass fractions. To validate its effectiveness, the approach is compared to standard ANNs in terms of performance and ANN complexity. Four distinct reaction mechanisms (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, C<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>16</mn></mrow></msub></math></span>, C<span><math><msub><mrow></mrow><mrow><mn>12</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>26</mn></mrow></msub></math></span>, OME<span><math><msub><mrow></mrow><mrow><mn>34</mn></mrow></msub></math></span>) are used as a test cases, and results demonstrate that considerable improvements can be achieved by applying both modifications.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"16 ","pages":"Article 100341"},"PeriodicalIF":9.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666546824000077/pdfft?md5=74cf715196106974d71e060a8c29f244&pid=1-s2.0-S2666546824000077-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Utilizing neural networks to supplant chemical kinetics tabulation through mass conservation and weighting of species depletion\",\"authors\":\"Franz M. Rohrhofer ,&nbsp;Stefan Posch ,&nbsp;Clemens Gößnitzer ,&nbsp;José M. García-Oliver ,&nbsp;Bernhard C. Geiger\",\"doi\":\"10.1016/j.egyai.2024.100341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial Neural Networks (ANNs) have emerged as a powerful tool in combustion simulations to replace memory-intensive tabulation of integrated chemical kinetics. Complex reaction mechanisms, however, present a challenge for standard ANN approaches as modeling multiple species typically suffers from inaccurate predictions on minor species. This paper presents a novel ANN approach which can be applied on complex reaction mechanisms in tabular data form, and only involves training a single ANN for a complete reaction mechanism. The approach incorporates a network architecture that automatically conserves mass and employs a particular loss weighting based on species depletion. Both modifications are used to improve the overall ANN performance and individual prediction accuracies, especially for minor species mass fractions. To validate its effectiveness, the approach is compared to standard ANNs in terms of performance and ANN complexity. Four distinct reaction mechanisms (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, C<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>16</mn></mrow></msub></math></span>, C<span><math><msub><mrow></mrow><mrow><mn>12</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>26</mn></mrow></msub></math></span>, OME<span><math><msub><mrow></mrow><mrow><mn>34</mn></mrow></msub></math></span>) are used as a test cases, and results demonstrate that considerable improvements can be achieved by applying both modifications.</p></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"16 \",\"pages\":\"Article 100341\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000077/pdfft?md5=74cf715196106974d71e060a8c29f244&pid=1-s2.0-S2666546824000077-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824000077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

人工神经网络(ANN)已成为燃烧模拟中的一种强大工具,可取代需要大量记忆的综合化学动力学表格。然而,复杂的反应机制给标准的人工神经网络方法带来了挑战,因为多物种建模通常会导致对次要物种的预测不准确。本文介绍了一种新颖的方差网络方法,该方法可应用于表格数据形式的复杂反应机理,而且只需为完整的反应机理训练一个方差网络。该方法采用了自动保存质量的网络架构,并根据物种损耗采用了特定的损耗加权。这两项修改都用于提高 ANN 的整体性能和单个预测的准确性,尤其是对小物种质量分数的预测。为了验证该方法的有效性,我们将其与标准自动数值网络的性能和复杂性进行了比较。四个不同的反应机理(H2、C7H16、C12H26、OME34)被用作测试案例,结果表明,通过应用这两种修改,可以实现相当大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilizing neural networks to supplant chemical kinetics tabulation through mass conservation and weighting of species depletion

Artificial Neural Networks (ANNs) have emerged as a powerful tool in combustion simulations to replace memory-intensive tabulation of integrated chemical kinetics. Complex reaction mechanisms, however, present a challenge for standard ANN approaches as modeling multiple species typically suffers from inaccurate predictions on minor species. This paper presents a novel ANN approach which can be applied on complex reaction mechanisms in tabular data form, and only involves training a single ANN for a complete reaction mechanism. The approach incorporates a network architecture that automatically conserves mass and employs a particular loss weighting based on species depletion. Both modifications are used to improve the overall ANN performance and individual prediction accuracies, especially for minor species mass fractions. To validate its effectiveness, the approach is compared to standard ANNs in terms of performance and ANN complexity. Four distinct reaction mechanisms (H2, C7H16, C12H26, OME34) are used as a test cases, and results demonstrate that considerable improvements can be achieved by applying both modifications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
期刊最新文献
Predicting the thermal conductivity of polymer composites with one-dimensional oriented fillers using the combination of deep learning and ensemble learning A hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction Integrating local knowledge with ChatGPT-like large-scale language models for enhanced societal comprehension of carbon neutrality Optimization of a Bayesian game for Peer-to-Peer trading among prosumers under incomplete information via a CNN-LSTM-ATT Parameter sensitivity analysis for diesel spray penetration prediction based on GA-BP neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1