Huan Wang, Shuting Zhao, Zhiyang Han, Zexin Qi, Lei Han, Yu Li
{"title":"转录组和代谢组的综合分析有助于深入了解丝状褐藻对蓝光的反应。","authors":"Huan Wang, Shuting Zhao, Zhiyang Han, Zexin Qi, Lei Han, Yu Li","doi":"10.1186/s13568-024-01680-w","DOIUrl":null,"url":null,"abstract":"<p><p>Blue light promotes primordium differentiation and fruiting body formation of mushroom. However, the blue light response mechanism of mushroom remains unclear. In this study, mycelium of Flammulina filiformis was exposed to blue light, red light and dark conditions, and then the comparative metabolome and transcriptome analysis was applied to explore metabolic regulation mechanism of F. filiformis under blue light and red light conditions. The yield of the fruiting body of F. filiformis under blue light condition was much higher than that under dark and red light conditions. Metabolome analysis showed that blue light treatment reduced the concentrations of many low molecular weight carbohydrates in the pilei, but it promoted the accumulation of some low molecular weight carbohydrates in the stipes. Blue light also decreased the accumulation of organic acids in the stipes. Blue light treatment reduced the levels of tyrosine and tryptophan in the stipes, but it largely promoted the accumulation of lysine in this organ. In the stipes of F. filiformis, blue light shifted metabolite flow to synthesis of lysine and carbohydrates through inhibiting the accumulation of aromatic amino acids and organic acids, thereby enhancing its nutritional and medicinal values. The transcriptome analysis displayed that blue light enhanced accumulation of lysine in fruiting body of F. filiformis through downregulation of lysine methyltransferase gene and L-lysine 6-monooxygenase gene. Additionally, in the stipes, blue light upregulated many hydrolase genes to improve the ability of the stipe to biodegrade the medium and elevated the growth rate of the fruiting body.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864240/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated transcriptome and metabolome analysis provides insights into blue light response of Flammulina filiformis.\",\"authors\":\"Huan Wang, Shuting Zhao, Zhiyang Han, Zexin Qi, Lei Han, Yu Li\",\"doi\":\"10.1186/s13568-024-01680-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blue light promotes primordium differentiation and fruiting body formation of mushroom. However, the blue light response mechanism of mushroom remains unclear. In this study, mycelium of Flammulina filiformis was exposed to blue light, red light and dark conditions, and then the comparative metabolome and transcriptome analysis was applied to explore metabolic regulation mechanism of F. filiformis under blue light and red light conditions. The yield of the fruiting body of F. filiformis under blue light condition was much higher than that under dark and red light conditions. Metabolome analysis showed that blue light treatment reduced the concentrations of many low molecular weight carbohydrates in the pilei, but it promoted the accumulation of some low molecular weight carbohydrates in the stipes. Blue light also decreased the accumulation of organic acids in the stipes. Blue light treatment reduced the levels of tyrosine and tryptophan in the stipes, but it largely promoted the accumulation of lysine in this organ. In the stipes of F. filiformis, blue light shifted metabolite flow to synthesis of lysine and carbohydrates through inhibiting the accumulation of aromatic amino acids and organic acids, thereby enhancing its nutritional and medicinal values. The transcriptome analysis displayed that blue light enhanced accumulation of lysine in fruiting body of F. filiformis through downregulation of lysine methyltransferase gene and L-lysine 6-monooxygenase gene. Additionally, in the stipes, blue light upregulated many hydrolase genes to improve the ability of the stipe to biodegrade the medium and elevated the growth rate of the fruiting body.</p>\",\"PeriodicalId\":7537,\"journal\":{\"name\":\"AMB Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864240/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMB Express\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13568-024-01680-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01680-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Integrated transcriptome and metabolome analysis provides insights into blue light response of Flammulina filiformis.
Blue light promotes primordium differentiation and fruiting body formation of mushroom. However, the blue light response mechanism of mushroom remains unclear. In this study, mycelium of Flammulina filiformis was exposed to blue light, red light and dark conditions, and then the comparative metabolome and transcriptome analysis was applied to explore metabolic regulation mechanism of F. filiformis under blue light and red light conditions. The yield of the fruiting body of F. filiformis under blue light condition was much higher than that under dark and red light conditions. Metabolome analysis showed that blue light treatment reduced the concentrations of many low molecular weight carbohydrates in the pilei, but it promoted the accumulation of some low molecular weight carbohydrates in the stipes. Blue light also decreased the accumulation of organic acids in the stipes. Blue light treatment reduced the levels of tyrosine and tryptophan in the stipes, but it largely promoted the accumulation of lysine in this organ. In the stipes of F. filiformis, blue light shifted metabolite flow to synthesis of lysine and carbohydrates through inhibiting the accumulation of aromatic amino acids and organic acids, thereby enhancing its nutritional and medicinal values. The transcriptome analysis displayed that blue light enhanced accumulation of lysine in fruiting body of F. filiformis through downregulation of lysine methyltransferase gene and L-lysine 6-monooxygenase gene. Additionally, in the stipes, blue light upregulated many hydrolase genes to improve the ability of the stipe to biodegrade the medium and elevated the growth rate of the fruiting body.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.