利用基于视觉识别和机器学习的扫描电化学显微镜快速检测微小物体

IF 2.1 3区 工程技术 Q2 MICROSCOPY Ultramicroscopy Pub Date : 2024-02-15 DOI:10.1016/j.ultramic.2024.113937
Vadimas Ivinskij , Antanas Zinovicius , Andrius Dzedzickis , Jurga Subaciute-Zemaitiene , Juste Rozene , Vytautas Bucinskas , Eugenijus Macerauskas , Sonata Tolvaisiene , Inga Morkvenaite-Vilkonciene
{"title":"利用基于视觉识别和机器学习的扫描电化学显微镜快速检测微小物体","authors":"Vadimas Ivinskij ,&nbsp;Antanas Zinovicius ,&nbsp;Andrius Dzedzickis ,&nbsp;Jurga Subaciute-Zemaitiene ,&nbsp;Juste Rozene ,&nbsp;Vytautas Bucinskas ,&nbsp;Eugenijus Macerauskas ,&nbsp;Sonata Tolvaisiene ,&nbsp;Inga Morkvenaite-Vilkonciene","doi":"10.1016/j.ultramic.2024.113937","DOIUrl":null,"url":null,"abstract":"<div><p>Scanning electrochemical microscopy (SECM) is a scanning probe microscope with an ultramicroelectrode (UME) as a probe. The technique is advantageous in the characterization of the electrochemical properties of surfaces. However, the limitations, such as slow imaging and many functions depending on the user, only allow us to use some of the possibilities. Therefore, we applied visual recognition and machine learning to detect micro-objects from the image and determine their electrochemical activity. The reconstruction of the image from several approach curves allows it to scan faster and detect active areas of the sample. Therefore, the scanning time and presence of the user is diminished. An automated scanning electrochemical microscope with visual recognition has been developed using commercially available modules, relatively low-cost components, design, software solutions proven in other fields, and an original control and data fusion algorithm.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"259 ","pages":"Article 113937"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast detection of micro-objects using scanning electrochemical microscopy based on visual recognition and machine learning\",\"authors\":\"Vadimas Ivinskij ,&nbsp;Antanas Zinovicius ,&nbsp;Andrius Dzedzickis ,&nbsp;Jurga Subaciute-Zemaitiene ,&nbsp;Juste Rozene ,&nbsp;Vytautas Bucinskas ,&nbsp;Eugenijus Macerauskas ,&nbsp;Sonata Tolvaisiene ,&nbsp;Inga Morkvenaite-Vilkonciene\",\"doi\":\"10.1016/j.ultramic.2024.113937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Scanning electrochemical microscopy (SECM) is a scanning probe microscope with an ultramicroelectrode (UME) as a probe. The technique is advantageous in the characterization of the electrochemical properties of surfaces. However, the limitations, such as slow imaging and many functions depending on the user, only allow us to use some of the possibilities. Therefore, we applied visual recognition and machine learning to detect micro-objects from the image and determine their electrochemical activity. The reconstruction of the image from several approach curves allows it to scan faster and detect active areas of the sample. Therefore, the scanning time and presence of the user is diminished. An automated scanning electrochemical microscope with visual recognition has been developed using commercially available modules, relatively low-cost components, design, software solutions proven in other fields, and an original control and data fusion algorithm.</p></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"259 \",\"pages\":\"Article 113937\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000160\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000160","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

扫描电化学显微镜(SECM)是一种以超微电极(UME)为探针的扫描探针显微镜。该技术在表征表面电化学特性方面具有优势。然而,由于成像速度慢、功能多寡取决于用户等限制,我们只能使用其中的部分功能。因此,我们应用视觉识别和机器学习从图像中检测微小物体,并确定其电化学活性。通过几条方法曲线重建图像,可以更快地扫描和检测样品的活性区域。因此,扫描时间和用户在场时间都减少了。我们利用市场上可买到的模块、成本相对较低的组件、设计、在其他领域得到验证的软件解决方案以及独创的控制和数据融合算法,开发出了具有视觉识别功能的自动扫描电化学显微镜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast detection of micro-objects using scanning electrochemical microscopy based on visual recognition and machine learning

Scanning electrochemical microscopy (SECM) is a scanning probe microscope with an ultramicroelectrode (UME) as a probe. The technique is advantageous in the characterization of the electrochemical properties of surfaces. However, the limitations, such as slow imaging and many functions depending on the user, only allow us to use some of the possibilities. Therefore, we applied visual recognition and machine learning to detect micro-objects from the image and determine their electrochemical activity. The reconstruction of the image from several approach curves allows it to scan faster and detect active areas of the sample. Therefore, the scanning time and presence of the user is diminished. An automated scanning electrochemical microscope with visual recognition has been developed using commercially available modules, relatively low-cost components, design, software solutions proven in other fields, and an original control and data fusion algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
期刊最新文献
Aberration calculation of microlens array using differential algebraic method. Relativistic EELS scattering cross-sections for microanalysis based on Dirac solutions. Improved precision and accuracy of electron energy-loss spectroscopy quantification via fine structure fitting with constrained optimization. Workflow automation of SEM acquisitions and feature tracking. Enhancing subsurface imaging in ultrasonic atomic force microscopy with optimized contact force.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1