{"title":"儿童染色体异常、胎儿酒精综合征和母体接触有毒物质:纵向队列研究","authors":"David A. Geier, Mark R. Geier","doi":"10.1016/j.mrgentox.2024.503737","DOIUrl":null,"url":null,"abstract":"<div><p>DNA alterations in gametes, which may occur either spontaneously or as a result of exposure to genotoxicants, can lead to constitutional chromosomal anomalies in the offspring. Alcohol is an established genotoxicant. The goal of this hypothesis-testing longitudinal cohort study was to evaluate the effect of significant/sustained maternal alcohol exposure on clinically diagnosed constitutional chromosomal anomalies among children diagnosed with fetal alcohol syndrome (FAS). De-identified eligibility and claim healthcare records, prospectively generated from the 1990–2012 Florida Medicaid system within the Independent Healthcare Research Database (IHRD), were analyzed. Children examined were continuously eligible with ≥ 8 outpatient office visits during the 96-month period following birth. Among these children, 377 were diagnosed with FAS and 137,135 were not. The incidence rate of chromosomal anomalies involving segregation (trisomy 13, 18, or 21, n = 625), microdeletions (microdeletion syndromes, n = 39), and point mutations (sickle-cell anemia/cystic fibrosis, n = 2570) were examined using frequency risk ratio (RR) and logistic regression (adjusted odds ratio (aOR) for sex, race, residence, socioeconomic/environmental exposure status, and birth date) models. The incidence rates of chromosomal anomalies involving segregation (RR=5.92, aOR=5.85) and microdeletions (RR=41.6, aOR=34.1) were significantly increased in the FAS cohort as compared to the non-diagnosed cohort, but there was no difference in the incidence rate of point mutations (RR=1.14, aOR=1.29). Maternal toxicant exposure should be considered in the etiology of constitutional chromosomal anomaly in offspring.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"894 ","pages":"Article 503737"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constitutional chromosomal anomalies in children, fetal alcohol syndrome, and maternal toxicant exposures: A longitudinal cohort study\",\"authors\":\"David A. Geier, Mark R. Geier\",\"doi\":\"10.1016/j.mrgentox.2024.503737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>DNA alterations in gametes, which may occur either spontaneously or as a result of exposure to genotoxicants, can lead to constitutional chromosomal anomalies in the offspring. Alcohol is an established genotoxicant. The goal of this hypothesis-testing longitudinal cohort study was to evaluate the effect of significant/sustained maternal alcohol exposure on clinically diagnosed constitutional chromosomal anomalies among children diagnosed with fetal alcohol syndrome (FAS). De-identified eligibility and claim healthcare records, prospectively generated from the 1990–2012 Florida Medicaid system within the Independent Healthcare Research Database (IHRD), were analyzed. Children examined were continuously eligible with ≥ 8 outpatient office visits during the 96-month period following birth. Among these children, 377 were diagnosed with FAS and 137,135 were not. The incidence rate of chromosomal anomalies involving segregation (trisomy 13, 18, or 21, n = 625), microdeletions (microdeletion syndromes, n = 39), and point mutations (sickle-cell anemia/cystic fibrosis, n = 2570) were examined using frequency risk ratio (RR) and logistic regression (adjusted odds ratio (aOR) for sex, race, residence, socioeconomic/environmental exposure status, and birth date) models. The incidence rates of chromosomal anomalies involving segregation (RR=5.92, aOR=5.85) and microdeletions (RR=41.6, aOR=34.1) were significantly increased in the FAS cohort as compared to the non-diagnosed cohort, but there was no difference in the incidence rate of point mutations (RR=1.14, aOR=1.29). Maternal toxicant exposure should be considered in the etiology of constitutional chromosomal anomaly in offspring.</p></div>\",\"PeriodicalId\":18799,\"journal\":{\"name\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"volume\":\"894 \",\"pages\":\"Article 503737\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383571824000135\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571824000135","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Constitutional chromosomal anomalies in children, fetal alcohol syndrome, and maternal toxicant exposures: A longitudinal cohort study
DNA alterations in gametes, which may occur either spontaneously or as a result of exposure to genotoxicants, can lead to constitutional chromosomal anomalies in the offspring. Alcohol is an established genotoxicant. The goal of this hypothesis-testing longitudinal cohort study was to evaluate the effect of significant/sustained maternal alcohol exposure on clinically diagnosed constitutional chromosomal anomalies among children diagnosed with fetal alcohol syndrome (FAS). De-identified eligibility and claim healthcare records, prospectively generated from the 1990–2012 Florida Medicaid system within the Independent Healthcare Research Database (IHRD), were analyzed. Children examined were continuously eligible with ≥ 8 outpatient office visits during the 96-month period following birth. Among these children, 377 were diagnosed with FAS and 137,135 were not. The incidence rate of chromosomal anomalies involving segregation (trisomy 13, 18, or 21, n = 625), microdeletions (microdeletion syndromes, n = 39), and point mutations (sickle-cell anemia/cystic fibrosis, n = 2570) were examined using frequency risk ratio (RR) and logistic regression (adjusted odds ratio (aOR) for sex, race, residence, socioeconomic/environmental exposure status, and birth date) models. The incidence rates of chromosomal anomalies involving segregation (RR=5.92, aOR=5.85) and microdeletions (RR=41.6, aOR=34.1) were significantly increased in the FAS cohort as compared to the non-diagnosed cohort, but there was no difference in the incidence rate of point mutations (RR=1.14, aOR=1.29). Maternal toxicant exposure should be considered in the etiology of constitutional chromosomal anomaly in offspring.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.