边缘计算中作为网络斯坦纳树估算的边缘数据分布

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Computing Pub Date : 2024-02-08 DOI:10.1007/s00607-024-01259-0
Chinmaya Kumar Swain, Ravi Shankar, Aryabartta Sahu
{"title":"边缘计算中作为网络斯坦纳树估算的边缘数据分布","authors":"Chinmaya Kumar Swain, Ravi Shankar, Aryabartta Sahu","doi":"10.1007/s00607-024-01259-0","DOIUrl":null,"url":null,"abstract":"<p>Many modern day cloud hosted applications such as virtual reality, real time games require low latency data access and computation to improve response time. So it is essential to bring the computation and data storage edge servers closer to the user’s geographical location to improve response times and save bandwidth. In particulars, in online gaming and on demand video services, the required application data present at cloud servers need to be placed on the edge servers to provide low latency app-functionalities. The transfer of huge amount of data from cloud server to edge server incurs high cost and time penalties. Thus, we need an efficient way to solve edge data distribution (EDD) problem which distribute the application data to the edge servers that minimizes transfer cost. In this work, we provide a refined formulation of an optimal approach to solve the EDD problem using integer linear programming (ILP) technique. Due to the time complexity limitation of the ILP approach, we propose an O(k) approximation algorithm based on network Steiner tree estimation (EDD-NSTE) for estimating solutions to dense large-scale EDD problem. The proposed approach is analyzed to be 11/6 approximation which is better than the state-of-the-art 2 approximation EDD-A approach. The experimental evaluation through simulation using real world EUA data set demonstrate that the EDD-NSTE outperform state-of-the-art approach and other representative approaches.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"9 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge data distribution as a network Steiner tree estimation in edge computing\",\"authors\":\"Chinmaya Kumar Swain, Ravi Shankar, Aryabartta Sahu\",\"doi\":\"10.1007/s00607-024-01259-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many modern day cloud hosted applications such as virtual reality, real time games require low latency data access and computation to improve response time. So it is essential to bring the computation and data storage edge servers closer to the user’s geographical location to improve response times and save bandwidth. In particulars, in online gaming and on demand video services, the required application data present at cloud servers need to be placed on the edge servers to provide low latency app-functionalities. The transfer of huge amount of data from cloud server to edge server incurs high cost and time penalties. Thus, we need an efficient way to solve edge data distribution (EDD) problem which distribute the application data to the edge servers that minimizes transfer cost. In this work, we provide a refined formulation of an optimal approach to solve the EDD problem using integer linear programming (ILP) technique. Due to the time complexity limitation of the ILP approach, we propose an O(k) approximation algorithm based on network Steiner tree estimation (EDD-NSTE) for estimating solutions to dense large-scale EDD problem. The proposed approach is analyzed to be 11/6 approximation which is better than the state-of-the-art 2 approximation EDD-A approach. The experimental evaluation through simulation using real world EUA data set demonstrate that the EDD-NSTE outperform state-of-the-art approach and other representative approaches.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01259-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01259-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

虚拟现实、实时游戏等许多现代云托管应用需要低延迟的数据访问和计算,以提高响应速度。因此,必须让计算和数据存储边缘服务器更靠近用户的地理位置,以提高响应速度并节省带宽。特别是在在线游戏和视频点播服务中,云服务器上所需的应用数据需要放在边缘服务器上,以提供低延迟的应用功能。从云服务器向边缘服务器传输大量数据会产生高昂的成本和时间成本。因此,我们需要一种有效的方法来解决边缘数据分发(EDD)问题,将应用数据分发到边缘服务器,从而最大限度地降低传输成本。在这项工作中,我们利用整数线性规划(ILP)技术提供了一种解决 EDD 问题的最优方法的细化表述。由于 ILP 方法的时间复杂度限制,我们提出了一种基于网络斯泰纳树估计的 O(k) 近似算法(EDD-NSTE),用于估计密集大规模 EDD 问题的解决方案。经分析,所提方法的近似度为 11/6,优于最先进的 2 次近似 EDD-A 方法。通过使用真实世界的 EUA 数据集进行模拟实验评估,证明 EDD-NSTE 优于最先进的方法和其他具有代表性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Edge data distribution as a network Steiner tree estimation in edge computing

Many modern day cloud hosted applications such as virtual reality, real time games require low latency data access and computation to improve response time. So it is essential to bring the computation and data storage edge servers closer to the user’s geographical location to improve response times and save bandwidth. In particulars, in online gaming and on demand video services, the required application data present at cloud servers need to be placed on the edge servers to provide low latency app-functionalities. The transfer of huge amount of data from cloud server to edge server incurs high cost and time penalties. Thus, we need an efficient way to solve edge data distribution (EDD) problem which distribute the application data to the edge servers that minimizes transfer cost. In this work, we provide a refined formulation of an optimal approach to solve the EDD problem using integer linear programming (ILP) technique. Due to the time complexity limitation of the ILP approach, we propose an O(k) approximation algorithm based on network Steiner tree estimation (EDD-NSTE) for estimating solutions to dense large-scale EDD problem. The proposed approach is analyzed to be 11/6 approximation which is better than the state-of-the-art 2 approximation EDD-A approach. The experimental evaluation through simulation using real world EUA data set demonstrate that the EDD-NSTE outperform state-of-the-art approach and other representative approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
期刊最新文献
Mapping and just-in-time traffic congestion mitigation for emergency vehicles in smart cities Fog intelligence for energy efficient management in smart street lamps Contextual authentication of users and devices using machine learning Multi-objective service composition optimization problem in IoT for agriculture 4.0 Robust evaluation of GPU compute instances for HPC and AI in the cloud: a TOPSIS approach with sensitivity, bootstrapping, and non-parametric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1