容器中瞬时气体流出研究

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Thermophysics and Aeromechanics Pub Date : 2024-02-13 DOI:10.1134/S0869864323050050
T. A. Gimon, V. I. Zvegintsev, N. N. Fedorova
{"title":"容器中瞬时气体流出研究","authors":"T. A. Gimon,&nbsp;V. I. Zvegintsev,&nbsp;N. N. Fedorova","doi":"10.1134/S0869864323050050","DOIUrl":null,"url":null,"abstract":"<div><p>An experimental study of the flow of air from a container through throttling tubes of various configurations with characteristic times from 0.6 to 9 s was carried out. The equivalent container-outlet area was determined based on the ratio of the length of the throttling tube to its nominal diameter. It was found that during the outflow, the gas temperature inside the container decreased by 10–15 %, which value differs substantially from the theoretical estimate of 60 % obtained assuming that the process was adiabatic. Based on the results of measuring the gas pressure and temperature in the container, a method is proposed for calculating the heat fluxes on the walls.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the transient gas outflow from a container\",\"authors\":\"T. A. Gimon,&nbsp;V. I. Zvegintsev,&nbsp;N. N. Fedorova\",\"doi\":\"10.1134/S0869864323050050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An experimental study of the flow of air from a container through throttling tubes of various configurations with characteristic times from 0.6 to 9 s was carried out. The equivalent container-outlet area was determined based on the ratio of the length of the throttling tube to its nominal diameter. It was found that during the outflow, the gas temperature inside the container decreased by 10–15 %, which value differs substantially from the theoretical estimate of 60 % obtained assuming that the process was adiabatic. Based on the results of measuring the gas pressure and temperature in the container, a method is proposed for calculating the heat fluxes on the walls.</p></div>\",\"PeriodicalId\":800,\"journal\":{\"name\":\"Thermophysics and Aeromechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysics and Aeromechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869864323050050\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323050050","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 对来自容器的气流通过特征时间从 0.6 秒到 9 秒的各种结构的节流管进行了实验研究。根据节流管长度与其标称直径之比,确定了等效容器出口面积。结果发现,在流出过程中,容器内的气体温度降低了 10-15%,这一数值与假定该过程为绝热过程而得出的 60% 的理论估计值相差很大。根据测量容器内气体压力和温度的结果,提出了一种计算壁上热通量的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of the transient gas outflow from a container

An experimental study of the flow of air from a container through throttling tubes of various configurations with characteristic times from 0.6 to 9 s was carried out. The equivalent container-outlet area was determined based on the ratio of the length of the throttling tube to its nominal diameter. It was found that during the outflow, the gas temperature inside the container decreased by 10–15 %, which value differs substantially from the theoretical estimate of 60 % obtained assuming that the process was adiabatic. Based on the results of measuring the gas pressure and temperature in the container, a method is proposed for calculating the heat fluxes on the walls.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
期刊最新文献
Experimental study of the influence of bubble interaction on their characteristics during transient boiling in a flow of subcooled liquid Modification of the DSMC method for a macroscopic chemical reaction On the influence of multi-walled carbon nanotube additives on the rheology of hydrocarbon-based drilling fluids Asymptotic decay of a far momentumless turbulent wake behind a sphere in an isotropic turbulent flow Modeling shock-wave cells at the initial region of the underexpanded supersonic jet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1