诊断甲状腺癌的深度学习方法

Gurmanik Kaur Mann, R. Busi, Satyanarayana Talam, Krishna Marlapalli
{"title":"诊断甲状腺癌的深度学习方法","authors":"Gurmanik Kaur Mann, R. Busi, Satyanarayana Talam, Krishna Marlapalli","doi":"10.1115/1.4064705","DOIUrl":null,"url":null,"abstract":"\n One of the prevalent, life-threatening disorders that have been on the rise in recent years is thyroid nodule. A frequent diagnostic technique for locating and identifying thyroid nodules is ultrasound imaging. However, it takes time and presents difficulties for the specialists to evaluate all of the slide images. Automated, reliable, and objective methods are required for accurately evaluating ultrasound images. Recent developments in deep learning have completely changed several facets of image analysis and computer-aided diagnostic (CAD) techniques that deal with the issue of identifying thyroid nodules. We reviewed the literature on the potential, constraints, and present applications of deep learning in thyroid cancer imaging and discussed the study's goals. We provided an overview of latest developments in the diagnosis of thyroid cancer using deep learning techniques and addressed about numerous difficulties and practical issues that can restrict the development of deep learning and its incorporation into healthcare setting.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"165 7-8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Methods for Diagnosing Thyroid Cancer\",\"authors\":\"Gurmanik Kaur Mann, R. Busi, Satyanarayana Talam, Krishna Marlapalli\",\"doi\":\"10.1115/1.4064705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n One of the prevalent, life-threatening disorders that have been on the rise in recent years is thyroid nodule. A frequent diagnostic technique for locating and identifying thyroid nodules is ultrasound imaging. However, it takes time and presents difficulties for the specialists to evaluate all of the slide images. Automated, reliable, and objective methods are required for accurately evaluating ultrasound images. Recent developments in deep learning have completely changed several facets of image analysis and computer-aided diagnostic (CAD) techniques that deal with the issue of identifying thyroid nodules. We reviewed the literature on the potential, constraints, and present applications of deep learning in thyroid cancer imaging and discussed the study's goals. We provided an overview of latest developments in the diagnosis of thyroid cancer using deep learning techniques and addressed about numerous difficulties and practical issues that can restrict the development of deep learning and its incorporation into healthcare setting.\",\"PeriodicalId\":73734,\"journal\":{\"name\":\"Journal of engineering and science in medical diagnostics and therapy\",\"volume\":\"165 7-8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of engineering and science in medical diagnostics and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,甲状腺结节成为威胁生命的常见疾病之一。定位和识别甲状腺结节的常用诊断技术是超声波成像。然而,对专家来说,评估所有切片图像既费时又费力。准确评估超声图像需要自动化、可靠和客观的方法。深度学习的最新发展彻底改变了图像分析和计算机辅助诊断(CAD)技术的多个方面,从而解决了甲状腺结节的识别问题。我们回顾了有关深度学习在甲状腺癌成像中的潜力、限制和当前应用的文献,并讨论了本研究的目标。我们概述了使用深度学习技术诊断甲状腺癌的最新进展,并讨论了可能限制深度学习的发展及其融入医疗环境的众多困难和实际问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning Methods for Diagnosing Thyroid Cancer
One of the prevalent, life-threatening disorders that have been on the rise in recent years is thyroid nodule. A frequent diagnostic technique for locating and identifying thyroid nodules is ultrasound imaging. However, it takes time and presents difficulties for the specialists to evaluate all of the slide images. Automated, reliable, and objective methods are required for accurately evaluating ultrasound images. Recent developments in deep learning have completely changed several facets of image analysis and computer-aided diagnostic (CAD) techniques that deal with the issue of identifying thyroid nodules. We reviewed the literature on the potential, constraints, and present applications of deep learning in thyroid cancer imaging and discussed the study's goals. We provided an overview of latest developments in the diagnosis of thyroid cancer using deep learning techniques and addressed about numerous difficulties and practical issues that can restrict the development of deep learning and its incorporation into healthcare setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Speed Three-Dimensional-Digital Image Correlation and Schlieren Imaging Integrated With Shock Tube Loading for Investigating Dynamic Response of Human Tympanic Membrane Exposed to Blasts. Quantifying the Fascicular Changes in Recovered Achilles Tendon Patients Using Diffusion Magnetic Resonance Imaging and Tractography. Assistive Technology for Real-Time Fall Prevention during Walking: Evaluation of the Effect of an Intelligent Foot Orthosis A Simple Poc Device for Temperature Control of Multiple Reactions During Recombinase Polymerase Amplification Auxetic Structure Inspired Microneedle Arrays for Minimally Invasive Drug Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1