Xavier Woorons, Frédéric Daussin, Adrien Combes, Patrick Mucci
{"title":"呼气末憋气达到临界点的超极限跑步运动的生理反应。","authors":"Xavier Woorons, Frédéric Daussin, Adrien Combes, Patrick Mucci","doi":"10.5114/jhk/174465","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to assess the physiological responses to repeated running exercise performed at supramaximal intensity and with end-expiratory breath holding (EEBH) up to the breaking point. Eight male runners participated in two running testing sessions on a motorized treadmill. In the first session, participants performed two sets of 8 repetitions at 125% of maximal aerobic velocity and with maximum EEBH. Each repetition started at the onset of EEBH and ended at its release. In the second session, participants replicated the same procedure, but with unrestricted breathing (URB). The change in cerebral and muscle oxygenation (Δ[Hb<sub>diff</sub>]), total haemoglobin concentration (Δ[THb]) and muscle reoxygenation were continuously assessed. End-tidal oxygen (PETO<sub>2</sub>) and carbon dioxide pressure (PETCO<sub>2</sub>), arterial oxygen saturation (SpO<sub>2</sub>) and heart rate (HR) were also measured throughout exercise.On average, EEBH was maintained for 10.1 ± 1 s. At the breaking point of EEBH, PETO<sub>2</sub> decreased to 54.1 ± 8 mmHg, whereas PETCO<sub>2</sub> increased to 74.8 ± 3.1 mmHg. At the end of repetitions, SpO<sub>2</sub> (nadir values 74.9 ± 5.0 vs. 95.7 ± 0.8%) and HR were lower with EEBH than with URB. Cerebral and muscle Δ[Hb<sub>diff</sub>] were also lower with EEBH, whereas this condition induced higher cerebral and muscle Δ[THb] and greater muscle reoxygenation. This study showed that performing repeated bouts of supramaximal running exercises with EEBH up to the breaking point induced a fall in arterial, cerebral and muscle oxygenation compared with the URB condition. These phenomena were accompanied by increases in regional blood volume likely resulting from compensatory vasodilation to preserve oxygen delivery to the brain and muscles.</p>","PeriodicalId":16055,"journal":{"name":"Journal of Human Kinetics","volume":"90 ","pages":"111-123"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875693/pdf/","citationCount":"0","resultStr":"{\"title\":\"Physiological Responses to Supramaximal Running Exercise with End-Expiratory Breath Holding up to the Breaking Point.\",\"authors\":\"Xavier Woorons, Frédéric Daussin, Adrien Combes, Patrick Mucci\",\"doi\":\"10.5114/jhk/174465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to assess the physiological responses to repeated running exercise performed at supramaximal intensity and with end-expiratory breath holding (EEBH) up to the breaking point. Eight male runners participated in two running testing sessions on a motorized treadmill. In the first session, participants performed two sets of 8 repetitions at 125% of maximal aerobic velocity and with maximum EEBH. Each repetition started at the onset of EEBH and ended at its release. In the second session, participants replicated the same procedure, but with unrestricted breathing (URB). The change in cerebral and muscle oxygenation (Δ[Hb<sub>diff</sub>]), total haemoglobin concentration (Δ[THb]) and muscle reoxygenation were continuously assessed. End-tidal oxygen (PETO<sub>2</sub>) and carbon dioxide pressure (PETCO<sub>2</sub>), arterial oxygen saturation (SpO<sub>2</sub>) and heart rate (HR) were also measured throughout exercise.On average, EEBH was maintained for 10.1 ± 1 s. At the breaking point of EEBH, PETO<sub>2</sub> decreased to 54.1 ± 8 mmHg, whereas PETCO<sub>2</sub> increased to 74.8 ± 3.1 mmHg. At the end of repetitions, SpO<sub>2</sub> (nadir values 74.9 ± 5.0 vs. 95.7 ± 0.8%) and HR were lower with EEBH than with URB. Cerebral and muscle Δ[Hb<sub>diff</sub>] were also lower with EEBH, whereas this condition induced higher cerebral and muscle Δ[THb] and greater muscle reoxygenation. This study showed that performing repeated bouts of supramaximal running exercises with EEBH up to the breaking point induced a fall in arterial, cerebral and muscle oxygenation compared with the URB condition. These phenomena were accompanied by increases in regional blood volume likely resulting from compensatory vasodilation to preserve oxygen delivery to the brain and muscles.</p>\",\"PeriodicalId\":16055,\"journal\":{\"name\":\"Journal of Human Kinetics\",\"volume\":\"90 \",\"pages\":\"111-123\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Kinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5114/jhk/174465\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Kinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/jhk/174465","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
Physiological Responses to Supramaximal Running Exercise with End-Expiratory Breath Holding up to the Breaking Point.
This study aimed to assess the physiological responses to repeated running exercise performed at supramaximal intensity and with end-expiratory breath holding (EEBH) up to the breaking point. Eight male runners participated in two running testing sessions on a motorized treadmill. In the first session, participants performed two sets of 8 repetitions at 125% of maximal aerobic velocity and with maximum EEBH. Each repetition started at the onset of EEBH and ended at its release. In the second session, participants replicated the same procedure, but with unrestricted breathing (URB). The change in cerebral and muscle oxygenation (Δ[Hbdiff]), total haemoglobin concentration (Δ[THb]) and muscle reoxygenation were continuously assessed. End-tidal oxygen (PETO2) and carbon dioxide pressure (PETCO2), arterial oxygen saturation (SpO2) and heart rate (HR) were also measured throughout exercise.On average, EEBH was maintained for 10.1 ± 1 s. At the breaking point of EEBH, PETO2 decreased to 54.1 ± 8 mmHg, whereas PETCO2 increased to 74.8 ± 3.1 mmHg. At the end of repetitions, SpO2 (nadir values 74.9 ± 5.0 vs. 95.7 ± 0.8%) and HR were lower with EEBH than with URB. Cerebral and muscle Δ[Hbdiff] were also lower with EEBH, whereas this condition induced higher cerebral and muscle Δ[THb] and greater muscle reoxygenation. This study showed that performing repeated bouts of supramaximal running exercises with EEBH up to the breaking point induced a fall in arterial, cerebral and muscle oxygenation compared with the URB condition. These phenomena were accompanied by increases in regional blood volume likely resulting from compensatory vasodilation to preserve oxygen delivery to the brain and muscles.
期刊介绍:
The Journal of Human Kinetics is an open access interdisciplinary periodical offering the latest research in the science of human movement studies. This comprehensive professional journal features articles and research notes encompassing such topic areas as: Kinesiology, Exercise Physiology and Nutrition, Sports Training and Behavioural Sciences in Sport, but especially considering elite and competitive aspects of sport.
The journal publishes original papers, invited reviews, short communications and letters to the Editors. Manuscripts submitted to the journal must contain novel data on theoretical or experimental research or on practical applications in the field of sport sciences.
The Journal of Human Kinetics is published in March, June, September and December.
We encourage scientists from around the world to submit their papers to our periodical.