San'gen Luo , Munan Yang , Shuwei Zhong , Sajjad Ur Rehman , Jiajie Li , Xiaoqiang Yu , Bin Yang
{"title":"钕铁硼磁体中致密化改性对晶界扩散的作用和影响机制","authors":"San'gen Luo , Munan Yang , Shuwei Zhong , Sajjad Ur Rehman , Jiajie Li , Xiaoqiang Yu , Bin Yang","doi":"10.1016/j.jre.2024.02.011","DOIUrl":null,"url":null,"abstract":"<div><div>Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets. This study investigates the factors that affect the efficiency of grain boundary diffusion, starting from the properties of the diffusion matrix. Through the adjustment of the sintering process, we effectively prepared magnets with varied densities that serve as the matrix for grain boundary diffusion with TbH<sub><em>x</em></sub> diffusion. The mobility characteristics of the Nd-rich phase during the densification stage are leveraged to ensure a more extensive distribution of heavy rare earth elements within the magnets. According to the experimental results, the increase in coercivity of low-density magnets after diffusion is significantly greater than that of relatively high-density magnets. The coercivity values measured are 805.32 kA/m for low-density magnets and 470.3 kA/m for high-density magnets. Additionally, grain boundary diffusion notably enhances the density of initial low-density magnets, addressing the issue of low density during the sintering stage. Before the diffusion treatment, the Nd-rich phases primarily concentrate at the triangular grain boundaries, resulting in an increased number of cavity defects in the magnets. These cavity defects contain atoms in a higher energy state, making them more prone to transition. Consequently, the diffusion activation energy at the void defects is lower than the intracrystalline diffusion activation energy, accelerating atom diffusion. The presence of larger cavities also provides more space for atom migration, thereby promoting the diffusion process. After the diffusion treatment, the proportion of bulk Nd-rich phases significantly decreases, and they infiltrate between the grains to fill the cavity defects, forming continuous fine grain boundaries. Based on these observations, the study aims to explore how to utilize this information to develop an efficient technique for grain boundary diffusion.</div></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"43 3","pages":"Pages 569-577"},"PeriodicalIF":5.2000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utility and influence mechanism of densification modulation on grain boundary diffusion in NdFeB magnets\",\"authors\":\"San'gen Luo , Munan Yang , Shuwei Zhong , Sajjad Ur Rehman , Jiajie Li , Xiaoqiang Yu , Bin Yang\",\"doi\":\"10.1016/j.jre.2024.02.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets. This study investigates the factors that affect the efficiency of grain boundary diffusion, starting from the properties of the diffusion matrix. Through the adjustment of the sintering process, we effectively prepared magnets with varied densities that serve as the matrix for grain boundary diffusion with TbH<sub><em>x</em></sub> diffusion. The mobility characteristics of the Nd-rich phase during the densification stage are leveraged to ensure a more extensive distribution of heavy rare earth elements within the magnets. According to the experimental results, the increase in coercivity of low-density magnets after diffusion is significantly greater than that of relatively high-density magnets. The coercivity values measured are 805.32 kA/m for low-density magnets and 470.3 kA/m for high-density magnets. Additionally, grain boundary diffusion notably enhances the density of initial low-density magnets, addressing the issue of low density during the sintering stage. Before the diffusion treatment, the Nd-rich phases primarily concentrate at the triangular grain boundaries, resulting in an increased number of cavity defects in the magnets. These cavity defects contain atoms in a higher energy state, making them more prone to transition. Consequently, the diffusion activation energy at the void defects is lower than the intracrystalline diffusion activation energy, accelerating atom diffusion. The presence of larger cavities also provides more space for atom migration, thereby promoting the diffusion process. After the diffusion treatment, the proportion of bulk Nd-rich phases significantly decreases, and they infiltrate between the grains to fill the cavity defects, forming continuous fine grain boundaries. Based on these observations, the study aims to explore how to utilize this information to develop an efficient technique for grain boundary diffusion.</div></div>\",\"PeriodicalId\":16940,\"journal\":{\"name\":\"Journal of Rare Earths\",\"volume\":\"43 3\",\"pages\":\"Pages 569-577\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rare Earths\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002072124000474\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072124000474","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Utility and influence mechanism of densification modulation on grain boundary diffusion in NdFeB magnets
Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets. This study investigates the factors that affect the efficiency of grain boundary diffusion, starting from the properties of the diffusion matrix. Through the adjustment of the sintering process, we effectively prepared magnets with varied densities that serve as the matrix for grain boundary diffusion with TbHx diffusion. The mobility characteristics of the Nd-rich phase during the densification stage are leveraged to ensure a more extensive distribution of heavy rare earth elements within the magnets. According to the experimental results, the increase in coercivity of low-density magnets after diffusion is significantly greater than that of relatively high-density magnets. The coercivity values measured are 805.32 kA/m for low-density magnets and 470.3 kA/m for high-density magnets. Additionally, grain boundary diffusion notably enhances the density of initial low-density magnets, addressing the issue of low density during the sintering stage. Before the diffusion treatment, the Nd-rich phases primarily concentrate at the triangular grain boundaries, resulting in an increased number of cavity defects in the magnets. These cavity defects contain atoms in a higher energy state, making them more prone to transition. Consequently, the diffusion activation energy at the void defects is lower than the intracrystalline diffusion activation energy, accelerating atom diffusion. The presence of larger cavities also provides more space for atom migration, thereby promoting the diffusion process. After the diffusion treatment, the proportion of bulk Nd-rich phases significantly decreases, and they infiltrate between the grains to fill the cavity defects, forming continuous fine grain boundaries. Based on these observations, the study aims to explore how to utilize this information to develop an efficient technique for grain boundary diffusion.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.