{"title":"数字孪生工程资产管理:综述、分析框架和未来方向","authors":"","doi":"10.1016/j.eng.2023.12.006","DOIUrl":null,"url":null,"abstract":"<div><div>Effective engineering asset management (EAM) is critical to economic development and improving livability in society, but its complexity often impedes optimal asset functionalities. Digital twins (DTs) could revolutionize the EAM paradigm by bidirectionally linking the physical and digital worlds in real time. There is great industrial and academic interest in DTs for EAM. However, previous review studies have predominately focused on technical aspects using limited life-cycle perspectives, failing to holistically synthesize DTs for EAM from the managerial point of view. Based on a systematic literature review, we introduce an analytical framework for describing DTs for EAM, which encompasses three levels: DT 1.0 for technical EAM, DT 2.0 for technical−human EAM, and DT 3.0 for technical−environmental EAM. Using this framework, we identify what is known, what is unknown, and future directions at each level. DT 1.0 addresses issues of asset quality, progress, and cost management, generating technical value. It lacks multi-objective self-adaptive EAM, however, and suffers from high application cost. It is imperative to enable closed-loop EAM in order to provide various functional services with affordable DT 1.0. DT 2.0 accommodates issues of human−machine symbiosis, safety, and flexibility management, generating managerial value beyond the technical performance improvement of engineering assets. However, DT 2.0 currently lacks the automation and security of human−machine interactions and the managerial value related to humans is not prominent enough. Future research needs to align technical and managerial value with highly automated and secure DT 2.0. DT 3.0 covers issues of participatory governance, organization management, sustainable development, and resilience enhancement, generating macro social value. Yet it suffers from organizational fragmentation and can only address limited social governance issues. Numerous research opportunities exist to coordinate different stakeholders. Similarly, future research opportunities exist to develop DT 3.0 in a more open and complex system.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions\",\"authors\":\"\",\"doi\":\"10.1016/j.eng.2023.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective engineering asset management (EAM) is critical to economic development and improving livability in society, but its complexity often impedes optimal asset functionalities. Digital twins (DTs) could revolutionize the EAM paradigm by bidirectionally linking the physical and digital worlds in real time. There is great industrial and academic interest in DTs for EAM. However, previous review studies have predominately focused on technical aspects using limited life-cycle perspectives, failing to holistically synthesize DTs for EAM from the managerial point of view. Based on a systematic literature review, we introduce an analytical framework for describing DTs for EAM, which encompasses three levels: DT 1.0 for technical EAM, DT 2.0 for technical−human EAM, and DT 3.0 for technical−environmental EAM. Using this framework, we identify what is known, what is unknown, and future directions at each level. DT 1.0 addresses issues of asset quality, progress, and cost management, generating technical value. It lacks multi-objective self-adaptive EAM, however, and suffers from high application cost. It is imperative to enable closed-loop EAM in order to provide various functional services with affordable DT 1.0. DT 2.0 accommodates issues of human−machine symbiosis, safety, and flexibility management, generating managerial value beyond the technical performance improvement of engineering assets. However, DT 2.0 currently lacks the automation and security of human−machine interactions and the managerial value related to humans is not prominent enough. Future research needs to align technical and managerial value with highly automated and secure DT 2.0. DT 3.0 covers issues of participatory governance, organization management, sustainable development, and resilience enhancement, generating macro social value. Yet it suffers from organizational fragmentation and can only address limited social governance issues. Numerous research opportunities exist to coordinate different stakeholders. Similarly, future research opportunities exist to develop DT 3.0 in a more open and complex system.</div></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209580992400047X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209580992400047X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions
Effective engineering asset management (EAM) is critical to economic development and improving livability in society, but its complexity often impedes optimal asset functionalities. Digital twins (DTs) could revolutionize the EAM paradigm by bidirectionally linking the physical and digital worlds in real time. There is great industrial and academic interest in DTs for EAM. However, previous review studies have predominately focused on technical aspects using limited life-cycle perspectives, failing to holistically synthesize DTs for EAM from the managerial point of view. Based on a systematic literature review, we introduce an analytical framework for describing DTs for EAM, which encompasses three levels: DT 1.0 for technical EAM, DT 2.0 for technical−human EAM, and DT 3.0 for technical−environmental EAM. Using this framework, we identify what is known, what is unknown, and future directions at each level. DT 1.0 addresses issues of asset quality, progress, and cost management, generating technical value. It lacks multi-objective self-adaptive EAM, however, and suffers from high application cost. It is imperative to enable closed-loop EAM in order to provide various functional services with affordable DT 1.0. DT 2.0 accommodates issues of human−machine symbiosis, safety, and flexibility management, generating managerial value beyond the technical performance improvement of engineering assets. However, DT 2.0 currently lacks the automation and security of human−machine interactions and the managerial value related to humans is not prominent enough. Future research needs to align technical and managerial value with highly automated and secure DT 2.0. DT 3.0 covers issues of participatory governance, organization management, sustainable development, and resilience enhancement, generating macro social value. Yet it suffers from organizational fragmentation and can only address limited social governance issues. Numerous research opportunities exist to coordinate different stakeholders. Similarly, future research opportunities exist to develop DT 3.0 in a more open and complex system.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.