利用轴对称质子结构和凹槽实现纳米聚焦和超增强径向极化电场

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-02-16 DOI:10.1016/j.photonics.2024.101240
Fatemeh Salmeh, Masoud Mohebbi
{"title":"利用轴对称质子结构和凹槽实现纳米聚焦和超增强径向极化电场","authors":"Fatemeh Salmeh,&nbsp;Masoud Mohebbi","doi":"10.1016/j.photonics.2024.101240","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the enhancement and nanofocusing of a radially polarized electric field by a conical plasmonic structure (CPS). The CPS is a dielectric cone with nanometer metal cladding on a dielectric substrate. Concentric circular slanted grooves are etched on the surface of the dielectric substrate. These grooves converge the incident field on the structure. Angled periodic gratings are engraved on the CPS metal surface near the tip, creating a plasmonic momentum and contributing to the field enhancement above the apex. The symmetry of the incident radially polarized light and the structure significantly boosts nanofocusing and field enhancement. The optimal width of the nanofocusing and the electric field enhancement factor obtained are approximately 9 nm and 30000, respectively. Because of its impressive effects, this scheme is a valuable tool for plasmonic, optics, and laser applications.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taking advantage of an axisymmetric plasmonic structure and grooves to nanofocus and ultraenhance a radially polarized electric field\",\"authors\":\"Fatemeh Salmeh,&nbsp;Masoud Mohebbi\",\"doi\":\"10.1016/j.photonics.2024.101240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the enhancement and nanofocusing of a radially polarized electric field by a conical plasmonic structure (CPS). The CPS is a dielectric cone with nanometer metal cladding on a dielectric substrate. Concentric circular slanted grooves are etched on the surface of the dielectric substrate. These grooves converge the incident field on the structure. Angled periodic gratings are engraved on the CPS metal surface near the tip, creating a plasmonic momentum and contributing to the field enhancement above the apex. The symmetry of the incident radially polarized light and the structure significantly boosts nanofocusing and field enhancement. The optimal width of the nanofocusing and the electric field enhancement factor obtained are approximately 9 nm and 30000, respectively. Because of its impressive effects, this scheme is a valuable tool for plasmonic, optics, and laser applications.</p></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441024000154\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000154","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了锥形等离子体结构(CPS)对径向极化电场的增强和纳米聚焦。CPS 是介电基底上带有纳米金属包层的介电圆锥体。电介质基底表面蚀刻有同心圆斜槽。这些凹槽将入射场汇聚到结构上。在靠近顶端的 CPS 金属表面上刻有成角度的周期性光栅,形成等离子体动量,有助于增强顶点上方的场。入射径向偏振光与该结构的对称性极大地促进了纳米聚焦和场增强。获得的最佳纳米聚焦宽度和电场增强因子分别约为 9 纳米和 5 数量级。由于其令人印象深刻的效果,该方案是等离子体、光学和激光应用的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Taking advantage of an axisymmetric plasmonic structure and grooves to nanofocus and ultraenhance a radially polarized electric field

This study investigates the enhancement and nanofocusing of a radially polarized electric field by a conical plasmonic structure (CPS). The CPS is a dielectric cone with nanometer metal cladding on a dielectric substrate. Concentric circular slanted grooves are etched on the surface of the dielectric substrate. These grooves converge the incident field on the structure. Angled periodic gratings are engraved on the CPS metal surface near the tip, creating a plasmonic momentum and contributing to the field enhancement above the apex. The symmetry of the incident radially polarized light and the structure significantly boosts nanofocusing and field enhancement. The optimal width of the nanofocusing and the electric field enhancement factor obtained are approximately 9 nm and 30000, respectively. Because of its impressive effects, this scheme is a valuable tool for plasmonic, optics, and laser applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
期刊最新文献
224-fs soliton pulses generation at 1μm from ytterbium-doped fiber laser with CoTe2 nanosheets as an ultrafast modulator A hybrid mode splitter for separation and excitation of photonic crystal odd and even modes using plasmonic waveguides Temperature-modulated acetone monitoring using Al2O3-coated evanescent wave fiber optic sensors Cage-like micro-scaffolds fabricated by DLW method for cell investigation Design and optimization of a polarization-insensitive terahertz metamaterial absorber for sensing applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1