通过实施新型 PLL 架构克服单 VCO 频率合成器的相对带宽限制

IF 1.4 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Microwave and Wireless Technologies Pub Date : 2024-02-23 DOI:10.1017/s1759078723001484
Tobias T. Braun, Jan Schoepfel, Aldo J. Marquez M., Nils Pohl
{"title":"通过实施新型 PLL 架构克服单 VCO 频率合成器的相对带宽限制","authors":"Tobias T. Braun, Jan Schoepfel, Aldo J. Marquez M., Nils Pohl","doi":"10.1017/s1759078723001484","DOIUrl":null,"url":null,"abstract":"Frequency-modulated continuous-wave radar systems profit from increasing the absolute bandwidths of the generated frequency chirps to improve range resolution. As the relative bandwidth of SiGe-voltage-controlled oscillators (VCOs) is limited to about 80%, increasing the center frequency fundamentally or via frequency multiplication is the most direct way to increase that absolute bandwidth. However, as some applications require penetration depth, which dramatically decreases with frequency, other solutions are necessary. Therefore, state-of-the-art concepts rely on the down-conversion of generated frequency chirps via two separately stabilized frequency sources. This article implements a novel architecture, offering relative bandwidths of >100% within a single phase-locked loop (PLL). Therefore, two VCOs at different center frequencies are fed into a down-conversion mixer, whose output is directly stabilized via that PLL with one loop filter generating both tuning voltages. Those circuit blocks can be summarized as one equivalent VCO, offering a higher relative bandwidth and a significantly more linear tuning curve. Thereby, a solution to limited relative bandwidths with high VCO gain variation of single VCO synthesizers is offered while substantially reducing the hardware and implementation effort compared to the state-of-the-art.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming the relative bandwidth limitations of single VCO frequency synthesizers by implementing a novel PLL architecture\",\"authors\":\"Tobias T. Braun, Jan Schoepfel, Aldo J. Marquez M., Nils Pohl\",\"doi\":\"10.1017/s1759078723001484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequency-modulated continuous-wave radar systems profit from increasing the absolute bandwidths of the generated frequency chirps to improve range resolution. As the relative bandwidth of SiGe-voltage-controlled oscillators (VCOs) is limited to about 80%, increasing the center frequency fundamentally or via frequency multiplication is the most direct way to increase that absolute bandwidth. However, as some applications require penetration depth, which dramatically decreases with frequency, other solutions are necessary. Therefore, state-of-the-art concepts rely on the down-conversion of generated frequency chirps via two separately stabilized frequency sources. This article implements a novel architecture, offering relative bandwidths of >100% within a single phase-locked loop (PLL). Therefore, two VCOs at different center frequencies are fed into a down-conversion mixer, whose output is directly stabilized via that PLL with one loop filter generating both tuning voltages. Those circuit blocks can be summarized as one equivalent VCO, offering a higher relative bandwidth and a significantly more linear tuning curve. Thereby, a solution to limited relative bandwidths with high VCO gain variation of single VCO synthesizers is offered while substantially reducing the hardware and implementation effort compared to the state-of-the-art.\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078723001484\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078723001484","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

频率调制连续波雷达系统可以通过增加所产生频率啁啾的绝对带宽来提高测距分辨率。由于 SiGe 压控振荡器 (VCO) 的相对带宽限制在 80% 左右,因此从根本上或通过频率倍增提高中心频率是增加绝对带宽的最直接方法。然而,由于某些应用需要穿透深度,而穿透深度会随着频率的增加而急剧下降,因此必须采用其他解决方案。因此,最先进的概念依赖于通过两个单独稳定的频率源对产生的频率啁啾进行下变频。本文采用了一种新颖的架构,在单个锁相环 (PLL) 内提供 100%的相对带宽。因此,两个中心频率不同的 VCO 被送入一个下变频混频器,其输出通过该 PLL 直接稳定,一个环路滤波器产生两个调谐电压。这些电路块可概括为一个等效 VCO,提供更高的相对带宽和更线性的调谐曲线。因此,单 VCO 合成器的相对带宽有限、VCO 增益变化大的问题得到了解决,同时与最先进的合成器相比,大大减少了硬件和实施工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overcoming the relative bandwidth limitations of single VCO frequency synthesizers by implementing a novel PLL architecture
Frequency-modulated continuous-wave radar systems profit from increasing the absolute bandwidths of the generated frequency chirps to improve range resolution. As the relative bandwidth of SiGe-voltage-controlled oscillators (VCOs) is limited to about 80%, increasing the center frequency fundamentally or via frequency multiplication is the most direct way to increase that absolute bandwidth. However, as some applications require penetration depth, which dramatically decreases with frequency, other solutions are necessary. Therefore, state-of-the-art concepts rely on the down-conversion of generated frequency chirps via two separately stabilized frequency sources. This article implements a novel architecture, offering relative bandwidths of >100% within a single phase-locked loop (PLL). Therefore, two VCOs at different center frequencies are fed into a down-conversion mixer, whose output is directly stabilized via that PLL with one loop filter generating both tuning voltages. Those circuit blocks can be summarized as one equivalent VCO, offering a higher relative bandwidth and a significantly more linear tuning curve. Thereby, a solution to limited relative bandwidths with high VCO gain variation of single VCO synthesizers is offered while substantially reducing the hardware and implementation effort compared to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Microwave and Wireless Technologies
International Journal of Microwave and Wireless Technologies ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.50
自引率
7.10%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.
期刊最新文献
A fast phase calibration method for a liquid crystal microwave phased array antenna assisted by neural network Air-filled substrate integrated waveguide bandpass filter based on miniaturized non-resonant node structure Design of a broadband high-efficiency power amplifier based on a rectangular double transmission line structure A broadband metasurface antenna with multimode resonance Design of a broadband high-efficiency power amplifier based on ring-resonant filter with compensation architecture and a series of continuous modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1