Qingqing Li, Zi Ming Zeng, Shouqiang Sun, Ting ting Li, Yingqi Zeng
{"title":"从突发公共事件舆情中发现多种并存情绪","authors":"Qingqing Li, Zi Ming Zeng, Shouqiang Sun, Ting ting Li, Yingqi Zeng","doi":"10.1177/01655515241227532","DOIUrl":null,"url":null,"abstract":"To detect multiple coexisting emotions from public emergency opinions, this article proposes a novel two-stage multiple coexisting emotion-detection model. First, the text semantic feature extracted through bidirectional encoder representation from transformers (BERT) and the emotion lexicon feature extracted through the emotion dictionary are fused. Then, the emotion subjectivity judgement and multiple coexisting emotion detection are performed in two separate stages. In the first stage, we introduce synthetic minority oversampling technique (SMOTE) to enhance the balance of data distribution and select the optimal classifier to recognise opinion texts with emotion. In the second stage, the label powerset (LP)-SMOTE is proposed to increase the number of the minority category samples, and multichannel emotion classifiers and the decision mechanism are employed to recognise different types of emotions and determine the final coexisting emotion labels. Finally, the Weibo data about coronavirus disease 2019 (COVID-19) are collected to verify the effectiveness of the proposed model. Experiment results indicate that the proposed model outperforms state-of-the-art models, with the F1_macro of 0.8532, the F1_micro of 0.8333, and the hamming loss of 0.0476. The emotion detection results are conducive to decision-making for public emergency departments.","PeriodicalId":54796,"journal":{"name":"Journal of Information Science","volume":"52 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting multiple coexisting emotions from public emergency opinions\",\"authors\":\"Qingqing Li, Zi Ming Zeng, Shouqiang Sun, Ting ting Li, Yingqi Zeng\",\"doi\":\"10.1177/01655515241227532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To detect multiple coexisting emotions from public emergency opinions, this article proposes a novel two-stage multiple coexisting emotion-detection model. First, the text semantic feature extracted through bidirectional encoder representation from transformers (BERT) and the emotion lexicon feature extracted through the emotion dictionary are fused. Then, the emotion subjectivity judgement and multiple coexisting emotion detection are performed in two separate stages. In the first stage, we introduce synthetic minority oversampling technique (SMOTE) to enhance the balance of data distribution and select the optimal classifier to recognise opinion texts with emotion. In the second stage, the label powerset (LP)-SMOTE is proposed to increase the number of the minority category samples, and multichannel emotion classifiers and the decision mechanism are employed to recognise different types of emotions and determine the final coexisting emotion labels. Finally, the Weibo data about coronavirus disease 2019 (COVID-19) are collected to verify the effectiveness of the proposed model. Experiment results indicate that the proposed model outperforms state-of-the-art models, with the F1_macro of 0.8532, the F1_micro of 0.8333, and the hamming loss of 0.0476. The emotion detection results are conducive to decision-making for public emergency departments.\",\"PeriodicalId\":54796,\"journal\":{\"name\":\"Journal of Information Science\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/01655515241227532\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01655515241227532","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Detecting multiple coexisting emotions from public emergency opinions
To detect multiple coexisting emotions from public emergency opinions, this article proposes a novel two-stage multiple coexisting emotion-detection model. First, the text semantic feature extracted through bidirectional encoder representation from transformers (BERT) and the emotion lexicon feature extracted through the emotion dictionary are fused. Then, the emotion subjectivity judgement and multiple coexisting emotion detection are performed in two separate stages. In the first stage, we introduce synthetic minority oversampling technique (SMOTE) to enhance the balance of data distribution and select the optimal classifier to recognise opinion texts with emotion. In the second stage, the label powerset (LP)-SMOTE is proposed to increase the number of the minority category samples, and multichannel emotion classifiers and the decision mechanism are employed to recognise different types of emotions and determine the final coexisting emotion labels. Finally, the Weibo data about coronavirus disease 2019 (COVID-19) are collected to verify the effectiveness of the proposed model. Experiment results indicate that the proposed model outperforms state-of-the-art models, with the F1_macro of 0.8532, the F1_micro of 0.8333, and the hamming loss of 0.0476. The emotion detection results are conducive to decision-making for public emergency departments.
期刊介绍:
The Journal of Information Science is a peer-reviewed international journal of high repute covering topics of interest to all those researching and working in the sciences of information and knowledge management. The Editors welcome material on any aspect of information science theory, policy, application or practice that will advance thinking in the field.