{"title":"在整个稳定状态域,增量运动平均反应时间增加:对运动测试和处方的影响","authors":"","doi":"10.1016/j.smhs.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>We hypothesized that slowed oxygen uptake (<span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) kinetics for exercise transitions to higher power outputs (PO) within the steady state (SS) domain would increase the mean response time (MRT) with increasing exercise intensity during incremental exercise. Fourteen highly trained cyclists (mean ± standard deviation [<em>SD</em>]; age (39 ± 6) years [yr]; and <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> peak = (61 ± 9) mL/kg/min performed a maximal, ramp incremental cycling test and on separate days, four 6-min bouts of cycling at 30%, 45%, 65% & 75% of their incremental peak PO (Wpeak). SS trial data were used to calculate the MRT and verified by mono-exponential and linear curve fitting. When the ramp protocol attained the value from SS, the PO, in Watts (W), was converted to time (min) based on the ramp function W to quantify the incremental MRT (iMRT). Slope analyses for the <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> responses of the SS versus incremental exercise data below the gas exchange threshold (GET) revealed a significant difference (<em>p</em> = 0.003; [0.437 ± 0.08] vs. [0.382 ± 0.05] L⋅min<sup>−1</sup>). There was a significant difference between the 45% Wpeak steady state <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> (ss <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) ([3.08 ± 0.30] L⋅min<sup>−1</sup>, respectively), and 30% Wpeak ss <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> (2.26 ± 0.24) (<em>p</em> < 0.0001; [3.61 ± 0.80] vs. [2.20 ± 0.39] L⋅min<sup>−1</sup>) and between the iMRT for 45% and 30% Wpeak ss <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> values ([50.58 ± 36.85] s vs. [32.20 ± 43.28] s). These data indicate there is no single iMRT, which is consistent with slowed <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> kinetics and an increasing <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> deficit for higher exercise intensities within the SS domain.</p></div>","PeriodicalId":33620,"journal":{"name":"Sports Medicine and Health Science","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666337624000234/pdfft?md5=1d26c912f1aa34fef67f96affc761834&pid=1-s2.0-S2666337624000234-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Increases in the incremental exercise mean response time across the steady state domain: Implications for exercise testing & prescription\",\"authors\":\"\",\"doi\":\"10.1016/j.smhs.2024.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We hypothesized that slowed oxygen uptake (<span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) kinetics for exercise transitions to higher power outputs (PO) within the steady state (SS) domain would increase the mean response time (MRT) with increasing exercise intensity during incremental exercise. Fourteen highly trained cyclists (mean ± standard deviation [<em>SD</em>]; age (39 ± 6) years [yr]; and <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> peak = (61 ± 9) mL/kg/min performed a maximal, ramp incremental cycling test and on separate days, four 6-min bouts of cycling at 30%, 45%, 65% & 75% of their incremental peak PO (Wpeak). SS trial data were used to calculate the MRT and verified by mono-exponential and linear curve fitting. When the ramp protocol attained the value from SS, the PO, in Watts (W), was converted to time (min) based on the ramp function W to quantify the incremental MRT (iMRT). Slope analyses for the <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> responses of the SS versus incremental exercise data below the gas exchange threshold (GET) revealed a significant difference (<em>p</em> = 0.003; [0.437 ± 0.08] vs. [0.382 ± 0.05] L⋅min<sup>−1</sup>). There was a significant difference between the 45% Wpeak steady state <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> (ss <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) ([3.08 ± 0.30] L⋅min<sup>−1</sup>, respectively), and 30% Wpeak ss <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> (2.26 ± 0.24) (<em>p</em> < 0.0001; [3.61 ± 0.80] vs. [2.20 ± 0.39] L⋅min<sup>−1</sup>) and between the iMRT for 45% and 30% Wpeak ss <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> values ([50.58 ± 36.85] s vs. [32.20 ± 43.28] s). These data indicate there is no single iMRT, which is consistent with slowed <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> kinetics and an increasing <span><math><mrow><mover><mi>V</mi><mo>˙</mo></mover><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> deficit for higher exercise intensities within the SS domain.</p></div>\",\"PeriodicalId\":33620,\"journal\":{\"name\":\"Sports Medicine and Health Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666337624000234/pdfft?md5=1d26c912f1aa34fef67f96affc761834&pid=1-s2.0-S2666337624000234-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Medicine and Health Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666337624000234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine and Health Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666337624000234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
我们假设,在稳态(SS)范围内,随着运动强度的增加,运动过渡到更高功率输出(PO)时的摄氧(V˙O2)动力学会减慢,这将增加增量运动中的平均响应时间(MRT)。14 名训练有素的自行车运动员(平均值 ± 标准差 [SD];年龄 (39 ± 6) 岁 [yr];V˙O2 峰值 = (61 ± 9) mL/kg/min)进行了最大斜坡增量骑行测试,并分别在不同的日期,以增量峰值 PO(Wpeak)的 30%、45%、65% & 75% 进行了四次 6 分钟的骑行。使用 SS 试验数据计算 MRT,并通过单指数和线性曲线拟合进行验证。当斜坡协议达到 SS 值时,根据斜坡函数 W 将 PO(瓦特)转换为时间(分钟),以量化增量 MRT(iMRT)。对低于气体交换阈值(GET)的 SS 与增量运动数据的 V˙O2响应进行斜率分析,发现两者之间存在显著差异(p = 0.003;[0.437 ± 0.08] vs. [0.382 ± 0.05] L-min-1)。45% Wpeak 稳态 V˙O2(ss V˙O2)(分别为 [3.08 ± 0.30] L-min-1)与 30% Wpeak ss V˙O2(2.26 ± 0.24)之间存在显著差异(p < 0.0001;[3.61 ± 0.80] vs. [2.20 ± 0.39] L-min-1),以及 45% 和 30% Wpeak ss V˙O2 值的 iMRT 之间([50.58 ± 36.85] s vs. [32.20 ± 43.28] s)。这些数据表明并不存在单一的 iMRT,这与 V˙O2动力学减慢以及在 SS 领域内运动强度越高 V˙O2缺失越多是一致的。
Increases in the incremental exercise mean response time across the steady state domain: Implications for exercise testing & prescription
We hypothesized that slowed oxygen uptake () kinetics for exercise transitions to higher power outputs (PO) within the steady state (SS) domain would increase the mean response time (MRT) with increasing exercise intensity during incremental exercise. Fourteen highly trained cyclists (mean ± standard deviation [SD]; age (39 ± 6) years [yr]; and peak = (61 ± 9) mL/kg/min performed a maximal, ramp incremental cycling test and on separate days, four 6-min bouts of cycling at 30%, 45%, 65% & 75% of their incremental peak PO (Wpeak). SS trial data were used to calculate the MRT and verified by mono-exponential and linear curve fitting. When the ramp protocol attained the value from SS, the PO, in Watts (W), was converted to time (min) based on the ramp function W to quantify the incremental MRT (iMRT). Slope analyses for the responses of the SS versus incremental exercise data below the gas exchange threshold (GET) revealed a significant difference (p = 0.003; [0.437 ± 0.08] vs. [0.382 ± 0.05] L⋅min−1). There was a significant difference between the 45% Wpeak steady state (ss ) ([3.08 ± 0.30] L⋅min−1, respectively), and 30% Wpeak ss (2.26 ± 0.24) (p < 0.0001; [3.61 ± 0.80] vs. [2.20 ± 0.39] L⋅min−1) and between the iMRT for 45% and 30% Wpeak ss values ([50.58 ± 36.85] s vs. [32.20 ± 43.28] s). These data indicate there is no single iMRT, which is consistent with slowed kinetics and an increasing deficit for higher exercise intensities within the SS domain.