孕酮通过 ASCT2 抑制谷氨酰胺代谢,从而抑制子宫内膜癌的生长。

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioscience Reports Pub Date : 2024-03-29 DOI:10.1042/BSR20232035
Jinqiu Guo, Jianhui Fan, Yaru Zhang, Mengyue Li, Zeen Jin, Yuhong Shang, Hongshuo Zhang, Ying Kong
{"title":"孕酮通过 ASCT2 抑制谷氨酰胺代谢,从而抑制子宫内膜癌的生长。","authors":"Jinqiu Guo, Jianhui Fan, Yaru Zhang, Mengyue Li, Zeen Jin, Yuhong Shang, Hongshuo Zhang, Ying Kong","doi":"10.1042/BSR20232035","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial carcinoma (EC) is a common malignancy that originates from the endometrium and grows in the female reproductive system. Surgeries, as current treatments for cancer, however, cannot meet the fertility needs of young women patients. Thus, progesterone (P4) therapy is indispensable due to its effective temporary preservation of female fertility. Many cancer cells are often accompanied by changes in metabolic phenotypes, and abnormally dependent on the amino acid glutamine. However, whether P4 exerts an effect on EC via glutamine metabolism is unknown. In the present study, we found that P4 could inhibit glutamine metabolism in EC cells and down-regulate the expression of the glutamine transporter ASCT2. This regulation of ASCT2 affects the uptake of glutamine. Furthermore, the in vivo xenograft studies showed that P4 inhibited tumor growth and the expression of key enzymes involved in glutamine metabolism. Our study demonstrated that the direct regulation of glutamine metabolism by P4 and its anticancer effect was mediated through the inhibition of ASCT2. These results provide a mechanism underlying the effects of P4 therapy on EC from the perspective of glutamine metabolism.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10932743/pdf/","citationCount":"0","resultStr":"{\"title\":\"Progesterone inhibits endometrial cancer growth by inhibiting glutamine metabolism through ASCT2.\",\"authors\":\"Jinqiu Guo, Jianhui Fan, Yaru Zhang, Mengyue Li, Zeen Jin, Yuhong Shang, Hongshuo Zhang, Ying Kong\",\"doi\":\"10.1042/BSR20232035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endometrial carcinoma (EC) is a common malignancy that originates from the endometrium and grows in the female reproductive system. Surgeries, as current treatments for cancer, however, cannot meet the fertility needs of young women patients. Thus, progesterone (P4) therapy is indispensable due to its effective temporary preservation of female fertility. Many cancer cells are often accompanied by changes in metabolic phenotypes, and abnormally dependent on the amino acid glutamine. However, whether P4 exerts an effect on EC via glutamine metabolism is unknown. In the present study, we found that P4 could inhibit glutamine metabolism in EC cells and down-regulate the expression of the glutamine transporter ASCT2. This regulation of ASCT2 affects the uptake of glutamine. Furthermore, the in vivo xenograft studies showed that P4 inhibited tumor growth and the expression of key enzymes involved in glutamine metabolism. Our study demonstrated that the direct regulation of glutamine metabolism by P4 and its anticancer effect was mediated through the inhibition of ASCT2. These results provide a mechanism underlying the effects of P4 therapy on EC from the perspective of glutamine metabolism.</p>\",\"PeriodicalId\":8926,\"journal\":{\"name\":\"Bioscience Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10932743/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BSR20232035\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20232035","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

子宫内膜癌(EC)是一种常见的恶性肿瘤,起源于子宫内膜,生长于女性生殖系统。然而,目前治疗癌症的手术无法满足年轻女性患者的生育需求。因此,黄体酮(P4)疗法是不可或缺的,因为它能有效地暂时保留女性的生育能力。许多癌细胞往往伴有代谢表型的改变,对氨基酸谷氨酰胺的依赖异常。然而,P4是否通过谷氨酰胺代谢对EC产生影响尚不清楚。本研究发现,P4 可抑制 EC 细胞的谷氨酰胺代谢,并下调谷氨酰胺转运体 ASCT2 的表达。这种对 ASCT2 的调控影响了谷氨酰胺的摄取。此外,体内异种移植研究表明,P4 可抑制肿瘤生长和参与谷氨酰胺代谢的关键酶的表达。我们的研究表明,P4 对谷氨酰胺代谢的直接调节及其抗癌作用是通过抑制 ASCT2 介导的。这些结果从谷氨酰胺代谢的角度提供了P4疗法对EC产生影响的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progesterone inhibits endometrial cancer growth by inhibiting glutamine metabolism through ASCT2.

Endometrial carcinoma (EC) is a common malignancy that originates from the endometrium and grows in the female reproductive system. Surgeries, as current treatments for cancer, however, cannot meet the fertility needs of young women patients. Thus, progesterone (P4) therapy is indispensable due to its effective temporary preservation of female fertility. Many cancer cells are often accompanied by changes in metabolic phenotypes, and abnormally dependent on the amino acid glutamine. However, whether P4 exerts an effect on EC via glutamine metabolism is unknown. In the present study, we found that P4 could inhibit glutamine metabolism in EC cells and down-regulate the expression of the glutamine transporter ASCT2. This regulation of ASCT2 affects the uptake of glutamine. Furthermore, the in vivo xenograft studies showed that P4 inhibited tumor growth and the expression of key enzymes involved in glutamine metabolism. Our study demonstrated that the direct regulation of glutamine metabolism by P4 and its anticancer effect was mediated through the inhibition of ASCT2. These results provide a mechanism underlying the effects of P4 therapy on EC from the perspective of glutamine metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience Reports
Bioscience Reports 生物-细胞生物学
CiteScore
8.50
自引率
0.00%
发文量
380
审稿时长
6-12 weeks
期刊介绍: Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences. Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase. Articles are assessed on soundness, providing a home for valid findings and data. We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing: -new methodologies -tools and reagents to probe biological questions -mechanistic details -disease mechanisms -metabolic processes and their regulation -structure and function -bioenergetics
期刊最新文献
Overlapping and Distinct Physical and Biological Phenotypes in Pure Frailty and Obese Frailty. Neuroprotective properties of zinc oxide nanoparticles: therapeutic implications for Parkinson's disease. Retraction: miR-362-3p functions as a tumor suppressor through targeting MCM5 in cervical adenocarcinoma. Retraction: miR-802 participates in the inflammatory process of inflammatory bowel disease by suppressing SOCS5. Expression of Concern: MiR-203a-3p regulates TGF-β1-induced epithelial-mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1