{"title":"先进的固态射频电源,最大限度地提高能量效率,实现最佳超导射频腔充电","authors":"Long Hoang Duc, Dragos Dancila","doi":"10.1017/s1759078724000205","DOIUrl":null,"url":null,"abstract":"This paper outlines an experimental demonstration of an envelope tracking (ET) technique applied to a kilowatt-level single-ended solid-state power amplifier (SSPA), aimed at enhancing the charging efficiency of superconducting radio frequency (SRF) cavities by reducing reflection power while maintaining a high degree of efficiency. The technique is particularly designed for the pulsed operation of the European Spallation Source (ESS) at a nominal frequency of 352 MHz, with a 5% duty cycle and a pulse width of 3.5 ms. The study introduces an optimal charging scheme using a solid-state-based amplifier to maintain high efficiency, allowing for power ramp-up while minimizing reflections from SRF cavities and optimizing SSPA efficiency. A fast envelope tracking power supply (ETPS) system is implemented for the approximately 300 ms charging time required by the SRF cavities at ESS. The ETPS system, demonstrated on a single module as a proof-of-concept with scalability potential to a 400 kW power station, indicates an overall average efficiency of 70% and a 24% energy saving over traditional vacuum-tube based amplifiers. This demonstrates the ET technique’s effectiveness at the kilowatt level for efficient SRF cavity charging with reduced reflection, offering significant efficiency and energy savings.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"41 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An advanced solid-state RF power source maximizing energy efficiency for optimal superconducting RF cavity charging\",\"authors\":\"Long Hoang Duc, Dragos Dancila\",\"doi\":\"10.1017/s1759078724000205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper outlines an experimental demonstration of an envelope tracking (ET) technique applied to a kilowatt-level single-ended solid-state power amplifier (SSPA), aimed at enhancing the charging efficiency of superconducting radio frequency (SRF) cavities by reducing reflection power while maintaining a high degree of efficiency. The technique is particularly designed for the pulsed operation of the European Spallation Source (ESS) at a nominal frequency of 352 MHz, with a 5% duty cycle and a pulse width of 3.5 ms. The study introduces an optimal charging scheme using a solid-state-based amplifier to maintain high efficiency, allowing for power ramp-up while minimizing reflections from SRF cavities and optimizing SSPA efficiency. A fast envelope tracking power supply (ETPS) system is implemented for the approximately 300 ms charging time required by the SRF cavities at ESS. The ETPS system, demonstrated on a single module as a proof-of-concept with scalability potential to a 400 kW power station, indicates an overall average efficiency of 70% and a 24% energy saving over traditional vacuum-tube based amplifiers. This demonstrates the ET technique’s effectiveness at the kilowatt level for efficient SRF cavity charging with reduced reflection, offering significant efficiency and energy savings.\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078724000205\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000205","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An advanced solid-state RF power source maximizing energy efficiency for optimal superconducting RF cavity charging
This paper outlines an experimental demonstration of an envelope tracking (ET) technique applied to a kilowatt-level single-ended solid-state power amplifier (SSPA), aimed at enhancing the charging efficiency of superconducting radio frequency (SRF) cavities by reducing reflection power while maintaining a high degree of efficiency. The technique is particularly designed for the pulsed operation of the European Spallation Source (ESS) at a nominal frequency of 352 MHz, with a 5% duty cycle and a pulse width of 3.5 ms. The study introduces an optimal charging scheme using a solid-state-based amplifier to maintain high efficiency, allowing for power ramp-up while minimizing reflections from SRF cavities and optimizing SSPA efficiency. A fast envelope tracking power supply (ETPS) system is implemented for the approximately 300 ms charging time required by the SRF cavities at ESS. The ETPS system, demonstrated on a single module as a proof-of-concept with scalability potential to a 400 kW power station, indicates an overall average efficiency of 70% and a 24% energy saving over traditional vacuum-tube based amplifiers. This demonstrates the ET technique’s effectiveness at the kilowatt level for efficient SRF cavity charging with reduced reflection, offering significant efficiency and energy savings.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.