Jian Feng, Marion Herrmann, Anne-Maria Reinecke, Antonio Hurtado
{"title":"通过有限元建模优化用于水热传感器的激光钎焊陶瓷-不锈钢接头界面","authors":"Jian Feng, Marion Herrmann, Anne-Maria Reinecke, Antonio Hurtado","doi":"10.1007/s11665-024-09285-x","DOIUrl":null,"url":null,"abstract":"<div><p>The development of reliable joining techniques for ceramics and metals is crucial for energy applications, such as fuel cells, nuclear reactors, and high-temperature sensors, most especially for the sealing of hydrothermal sensors to study multiphase flows. However, during one-step active laser brazing it is a serious problem that a high thermal stress concentration can occur at the joint interfaces or on the ceramic side of the joint due to mismatches between the CTEs (coefficients of thermal expansion) and/or elastic constants. The uncontrolled thermal residual stress can lead to cracks and defects in the brazement. In the present work, an elastoplastic finite element method/numerical model was formulated to study the thermal residual stresses developed in the brazement between ceramics and austenitic stainless steel during cooling in active laser brazing. Calculations and comparison experiments were conducted to validate the simulated stress distribution in un-patterned ceramics. Stress analyses were conducted for planar and cylindrical specimen geometries (lab joints) relevant for miniaturized energy sensors. Laser interface patterning was employed to create micro-scale features on ceramic interfaces that reduce thermal stress concentrations. The optimization of the interface designing parameters including hatch size, structure width, pattern depth and metal/ceramic thickness ratio was performed using the Taguchi method with orthogonal arrays. The study suggests that laser interface structuring can modify thermal residual stresses in ceramic-to-metal brazements, thereby increasing the reliability of active brazing joints.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 13","pages":"6372 - 6379"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-09285-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimizing Interfaces in Laser-Brazed Ceramic-Stainless Steel Joints for Hydrothermal Sensors through Finite-Element Modeling\",\"authors\":\"Jian Feng, Marion Herrmann, Anne-Maria Reinecke, Antonio Hurtado\",\"doi\":\"10.1007/s11665-024-09285-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of reliable joining techniques for ceramics and metals is crucial for energy applications, such as fuel cells, nuclear reactors, and high-temperature sensors, most especially for the sealing of hydrothermal sensors to study multiphase flows. However, during one-step active laser brazing it is a serious problem that a high thermal stress concentration can occur at the joint interfaces or on the ceramic side of the joint due to mismatches between the CTEs (coefficients of thermal expansion) and/or elastic constants. The uncontrolled thermal residual stress can lead to cracks and defects in the brazement. In the present work, an elastoplastic finite element method/numerical model was formulated to study the thermal residual stresses developed in the brazement between ceramics and austenitic stainless steel during cooling in active laser brazing. Calculations and comparison experiments were conducted to validate the simulated stress distribution in un-patterned ceramics. Stress analyses were conducted for planar and cylindrical specimen geometries (lab joints) relevant for miniaturized energy sensors. Laser interface patterning was employed to create micro-scale features on ceramic interfaces that reduce thermal stress concentrations. The optimization of the interface designing parameters including hatch size, structure width, pattern depth and metal/ceramic thickness ratio was performed using the Taguchi method with orthogonal arrays. The study suggests that laser interface structuring can modify thermal residual stresses in ceramic-to-metal brazements, thereby increasing the reliability of active brazing joints.</p></div>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"33 13\",\"pages\":\"6372 - 6379\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11665-024-09285-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11665-024-09285-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-09285-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing Interfaces in Laser-Brazed Ceramic-Stainless Steel Joints for Hydrothermal Sensors through Finite-Element Modeling
The development of reliable joining techniques for ceramics and metals is crucial for energy applications, such as fuel cells, nuclear reactors, and high-temperature sensors, most especially for the sealing of hydrothermal sensors to study multiphase flows. However, during one-step active laser brazing it is a serious problem that a high thermal stress concentration can occur at the joint interfaces or on the ceramic side of the joint due to mismatches between the CTEs (coefficients of thermal expansion) and/or elastic constants. The uncontrolled thermal residual stress can lead to cracks and defects in the brazement. In the present work, an elastoplastic finite element method/numerical model was formulated to study the thermal residual stresses developed in the brazement between ceramics and austenitic stainless steel during cooling in active laser brazing. Calculations and comparison experiments were conducted to validate the simulated stress distribution in un-patterned ceramics. Stress analyses were conducted for planar and cylindrical specimen geometries (lab joints) relevant for miniaturized energy sensors. Laser interface patterning was employed to create micro-scale features on ceramic interfaces that reduce thermal stress concentrations. The optimization of the interface designing parameters including hatch size, structure width, pattern depth and metal/ceramic thickness ratio was performed using the Taguchi method with orthogonal arrays. The study suggests that laser interface structuring can modify thermal residual stresses in ceramic-to-metal brazements, thereby increasing the reliability of active brazing joints.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered