Miroslav Sahul, Marián Pavlík, Martin Sahul, Pavel Kovačócy, Maroš Martinkovič
{"title":"行进速度对线材和电弧增材制造生产的 5087 铝合金壁性能的影响","authors":"Miroslav Sahul, Marián Pavlík, Martin Sahul, Pavel Kovačócy, Maroš Martinkovič","doi":"10.1007/s11665-024-09166-3","DOIUrl":null,"url":null,"abstract":"<div><p>An innovative Wire and Arc Additive Manufacturing combines the well-studied process of arc welding with direct energy deposition. Effect of travel speed 5.0 and 7.5 mm/s on the microstructure and mechanical properties of 5087 aluminum alloy was investigated. Five thousand eighty-three aluminum alloy was used as a substrate material and 5087 aluminum alloy was utilized as a filler material for the walls fabrication. The presence of pores reducing the strength of the overlay weld metal was detected on both overlay welds. The lower welding speed (5 mm/s) resulted in the smaller amount of porosity in comparison to higher welding speed (7.5 mm/s). Average pore area of wall No. 1 was 0.66% and wall No. 2 was 1.13%. It was found that higher welding speed affected the wall width and overlay weld bead geometry. Increase in welding speed led to a narrowing of wall width from 10.23 to 8.44 mm. The microstructure of weld metal matrix consisted of a α-Al substitution solid solution. The tensile strength of parallel to welding direction removed samples exceeded the tensile strength of perpendicular removed samples. It is a result of the cohesion of the layers in the overlay welding direction compared to the non-uniformity of the layers in the perpendicular direction. Furthermore, the tensile strength was higher in the case of travel speed of 5 mm/s in comparison to that of 7.5 mm/s.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 16","pages":"8582 - 8600"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-09166-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of Travel Speed on the Properties of 5087 Aluminum Alloy Walls Produced by Wire and Arc Additive Manufacturing\",\"authors\":\"Miroslav Sahul, Marián Pavlík, Martin Sahul, Pavel Kovačócy, Maroš Martinkovič\",\"doi\":\"10.1007/s11665-024-09166-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An innovative Wire and Arc Additive Manufacturing combines the well-studied process of arc welding with direct energy deposition. Effect of travel speed 5.0 and 7.5 mm/s on the microstructure and mechanical properties of 5087 aluminum alloy was investigated. Five thousand eighty-three aluminum alloy was used as a substrate material and 5087 aluminum alloy was utilized as a filler material for the walls fabrication. The presence of pores reducing the strength of the overlay weld metal was detected on both overlay welds. The lower welding speed (5 mm/s) resulted in the smaller amount of porosity in comparison to higher welding speed (7.5 mm/s). Average pore area of wall No. 1 was 0.66% and wall No. 2 was 1.13%. It was found that higher welding speed affected the wall width and overlay weld bead geometry. Increase in welding speed led to a narrowing of wall width from 10.23 to 8.44 mm. The microstructure of weld metal matrix consisted of a α-Al substitution solid solution. The tensile strength of parallel to welding direction removed samples exceeded the tensile strength of perpendicular removed samples. It is a result of the cohesion of the layers in the overlay welding direction compared to the non-uniformity of the layers in the perpendicular direction. Furthermore, the tensile strength was higher in the case of travel speed of 5 mm/s in comparison to that of 7.5 mm/s.</p></div>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"33 16\",\"pages\":\"8582 - 8600\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11665-024-09166-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11665-024-09166-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-09166-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Travel Speed on the Properties of 5087 Aluminum Alloy Walls Produced by Wire and Arc Additive Manufacturing
An innovative Wire and Arc Additive Manufacturing combines the well-studied process of arc welding with direct energy deposition. Effect of travel speed 5.0 and 7.5 mm/s on the microstructure and mechanical properties of 5087 aluminum alloy was investigated. Five thousand eighty-three aluminum alloy was used as a substrate material and 5087 aluminum alloy was utilized as a filler material for the walls fabrication. The presence of pores reducing the strength of the overlay weld metal was detected on both overlay welds. The lower welding speed (5 mm/s) resulted in the smaller amount of porosity in comparison to higher welding speed (7.5 mm/s). Average pore area of wall No. 1 was 0.66% and wall No. 2 was 1.13%. It was found that higher welding speed affected the wall width and overlay weld bead geometry. Increase in welding speed led to a narrowing of wall width from 10.23 to 8.44 mm. The microstructure of weld metal matrix consisted of a α-Al substitution solid solution. The tensile strength of parallel to welding direction removed samples exceeded the tensile strength of perpendicular removed samples. It is a result of the cohesion of the layers in the overlay welding direction compared to the non-uniformity of the layers in the perpendicular direction. Furthermore, the tensile strength was higher in the case of travel speed of 5 mm/s in comparison to that of 7.5 mm/s.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered