{"title":"使用 qPlus 传感器的原子力显微镜","authors":"Franz J. Giessibl","doi":"10.1557/s43577-023-00654-w","DOIUrl":null,"url":null,"abstract":"<p>Atomic force microscopy is one of the most important tools in nanoscience. It employs an atomic probe that can resolve surfaces with atomic and subatomic spatial resolution and manipulate atoms. The qPlus sensor is a quartz-based self-sensing cantilever with a high stiffness that, in contrast to Si cantilevers, allows to oscillate at atomic radius amplitudes in the proximity of reactive surfaces and thus provides a high spatial resolution. This article reports on the development of this sensor and discusses applications in materials research.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic force microscopy with qPlus sensors\",\"authors\":\"Franz J. Giessibl\",\"doi\":\"10.1557/s43577-023-00654-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atomic force microscopy is one of the most important tools in nanoscience. It employs an atomic probe that can resolve surfaces with atomic and subatomic spatial resolution and manipulate atoms. The qPlus sensor is a quartz-based self-sensing cantilever with a high stiffness that, in contrast to Si cantilevers, allows to oscillate at atomic radius amplitudes in the proximity of reactive surfaces and thus provides a high spatial resolution. This article reports on the development of this sensor and discusses applications in materials research.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":18828,\"journal\":{\"name\":\"Mrs Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mrs Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43577-023-00654-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-023-00654-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Atomic force microscopy is one of the most important tools in nanoscience. It employs an atomic probe that can resolve surfaces with atomic and subatomic spatial resolution and manipulate atoms. The qPlus sensor is a quartz-based self-sensing cantilever with a high stiffness that, in contrast to Si cantilevers, allows to oscillate at atomic radius amplitudes in the proximity of reactive surfaces and thus provides a high spatial resolution. This article reports on the development of this sensor and discusses applications in materials research.
期刊介绍:
MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.