基于图像的胶质母细胞瘤个性化治疗:新型深度学习驱动肿瘤生长模型的临床和生物学验证研究。

IF 3.7 Q1 CLINICAL NEUROLOGY Neuro-oncology advances Pub Date : 2023-12-27 eCollection Date: 2024-01-01 DOI:10.1093/noajnl/vdad171
Marie-Christin Metz, Ivan Ezhov, Jan C Peeken, Josef A Buchner, Jana Lipkova, Florian Kofler, Diana Waldmannstetter, Claire Delbridge, Christian Diehl, Denise Bernhardt, Friederike Schmidt-Graf, Jens Gempt, Stephanie E Combs, Claus Zimmer, Bjoern Menze, Benedikt Wiestler
{"title":"基于图像的胶质母细胞瘤个性化治疗:新型深度学习驱动肿瘤生长模型的临床和生物学验证研究。","authors":"Marie-Christin Metz, Ivan Ezhov, Jan C Peeken, Josef A Buchner, Jana Lipkova, Florian Kofler, Diana Waldmannstetter, Claire Delbridge, Christian Diehl, Denise Bernhardt, Friederike Schmidt-Graf, Jens Gempt, Stephanie E Combs, Claus Zimmer, Bjoern Menze, Benedikt Wiestler","doi":"10.1093/noajnl/vdad171","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The diffuse growth pattern of glioblastoma is one of the main challenges for accurate treatment. Computational tumor growth modeling has emerged as a promising tool to guide personalized therapy. Here, we performed clinical and biological validation of a novel growth model, aiming to close the gap between the experimental state and clinical implementation.</p><p><strong>Methods: </strong>One hundred and twenty-four patients from The Cancer Genome Archive (TCGA) and 397 patients from the UCSF Glioma Dataset were assessed for significant correlations between clinical data, genetic pathway activation maps (generated with PARADIGM; TCGA only), and infiltration (<i>D</i><sub>w</sub>) as well as proliferation (ρ) parameters stemming from a Fisher-Kolmogorov growth model. To further evaluate clinical potential, we performed the same growth modeling on preoperative magnetic resonance imaging data from 30 patients of our institution and compared model-derived tumor volume and recurrence coverage with standard radiotherapy plans.</p><p><strong>Results: </strong>The parameter ratio <i>D</i><sub>w</sub>/ρ (<i>P</i> < .05 in TCGA) as well as the simulated tumor volume (<i>P</i> < .05 in TCGA/UCSF) were significantly inversely correlated with overall survival. Interestingly, we found a significant correlation between 11 proliferation pathways and the estimated proliferation parameter. Depending on the cutoff value for tumor cell density, we observed a significant improvement in recurrence coverage without significantly increased radiation volume utilizing model-derived target volumes instead of standard radiation plans.</p><p><strong>Conclusions: </strong>Identifying a significant correlation between computed growth parameters and clinical and biological data, we highlight the potential of tumor growth modeling for individualized therapy of glioblastoma. This might improve the accuracy of radiation planning in the near future.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"6 1","pages":"vdad171"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907005/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toward image-based personalization of glioblastoma therapy: A clinical and biological validation study of a novel, deep learning-driven tumor growth model.\",\"authors\":\"Marie-Christin Metz, Ivan Ezhov, Jan C Peeken, Josef A Buchner, Jana Lipkova, Florian Kofler, Diana Waldmannstetter, Claire Delbridge, Christian Diehl, Denise Bernhardt, Friederike Schmidt-Graf, Jens Gempt, Stephanie E Combs, Claus Zimmer, Bjoern Menze, Benedikt Wiestler\",\"doi\":\"10.1093/noajnl/vdad171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The diffuse growth pattern of glioblastoma is one of the main challenges for accurate treatment. Computational tumor growth modeling has emerged as a promising tool to guide personalized therapy. Here, we performed clinical and biological validation of a novel growth model, aiming to close the gap between the experimental state and clinical implementation.</p><p><strong>Methods: </strong>One hundred and twenty-four patients from The Cancer Genome Archive (TCGA) and 397 patients from the UCSF Glioma Dataset were assessed for significant correlations between clinical data, genetic pathway activation maps (generated with PARADIGM; TCGA only), and infiltration (<i>D</i><sub>w</sub>) as well as proliferation (ρ) parameters stemming from a Fisher-Kolmogorov growth model. To further evaluate clinical potential, we performed the same growth modeling on preoperative magnetic resonance imaging data from 30 patients of our institution and compared model-derived tumor volume and recurrence coverage with standard radiotherapy plans.</p><p><strong>Results: </strong>The parameter ratio <i>D</i><sub>w</sub>/ρ (<i>P</i> < .05 in TCGA) as well as the simulated tumor volume (<i>P</i> < .05 in TCGA/UCSF) were significantly inversely correlated with overall survival. Interestingly, we found a significant correlation between 11 proliferation pathways and the estimated proliferation parameter. Depending on the cutoff value for tumor cell density, we observed a significant improvement in recurrence coverage without significantly increased radiation volume utilizing model-derived target volumes instead of standard radiation plans.</p><p><strong>Conclusions: </strong>Identifying a significant correlation between computed growth parameters and clinical and biological data, we highlight the potential of tumor growth modeling for individualized therapy of glioblastoma. This might improve the accuracy of radiation planning in the near future.</p>\",\"PeriodicalId\":94157,\"journal\":{\"name\":\"Neuro-oncology advances\",\"volume\":\"6 1\",\"pages\":\"vdad171\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/noajnl/vdad171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdad171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:胶质母细胞瘤的弥漫生长模式是精确治疗的主要挑战之一。计算肿瘤生长模型已成为指导个性化治疗的一种有前途的工具。在此,我们对一种新型生长模型进行了临床和生物学验证,旨在缩小实验状态与临床实施之间的差距:方法:评估了癌症基因组档案(TCGA)中的124例患者和加州大学旧金山分校胶质瘤数据集中的397例患者的临床数据、遗传通路激活图(用PARADIGM生成;仅TCGA)、浸润(Dw)和增殖(ρ)参数之间的显著相关性,这些参数来自Fisher-Kolmogorov生长模型。为了进一步评估临床潜力,我们对本机构 30 名患者的术前磁共振成像数据进行了同样的生长建模,并将模型得出的肿瘤体积和复发覆盖率与标准放疗计划进行了比较:结果:参数比Dw/ρ(P P 结论:计算得出的肿瘤生长参数与临床和生物学数据之间存在明显的相关性,这凸显了肿瘤生长模型在胶质母细胞瘤个体化治疗中的潜力。在不久的将来,这可能会提高放射计划的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward image-based personalization of glioblastoma therapy: A clinical and biological validation study of a novel, deep learning-driven tumor growth model.

Background: The diffuse growth pattern of glioblastoma is one of the main challenges for accurate treatment. Computational tumor growth modeling has emerged as a promising tool to guide personalized therapy. Here, we performed clinical and biological validation of a novel growth model, aiming to close the gap between the experimental state and clinical implementation.

Methods: One hundred and twenty-four patients from The Cancer Genome Archive (TCGA) and 397 patients from the UCSF Glioma Dataset were assessed for significant correlations between clinical data, genetic pathway activation maps (generated with PARADIGM; TCGA only), and infiltration (Dw) as well as proliferation (ρ) parameters stemming from a Fisher-Kolmogorov growth model. To further evaluate clinical potential, we performed the same growth modeling on preoperative magnetic resonance imaging data from 30 patients of our institution and compared model-derived tumor volume and recurrence coverage with standard radiotherapy plans.

Results: The parameter ratio Dw/ρ (P < .05 in TCGA) as well as the simulated tumor volume (P < .05 in TCGA/UCSF) were significantly inversely correlated with overall survival. Interestingly, we found a significant correlation between 11 proliferation pathways and the estimated proliferation parameter. Depending on the cutoff value for tumor cell density, we observed a significant improvement in recurrence coverage without significantly increased radiation volume utilizing model-derived target volumes instead of standard radiation plans.

Conclusions: Identifying a significant correlation between computed growth parameters and clinical and biological data, we highlight the potential of tumor growth modeling for individualized therapy of glioblastoma. This might improve the accuracy of radiation planning in the near future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
The landscape of immune checkpoint inhibitor clinical trials in glioblastoma: A systematic review. Cell migration simulator-based biomarkers for glioblastoma. Targeting the IDH1 R132H mutation in gliomas by CRISPR/Cas precision base editing. miR-644a is a tumor cell-intrinsic mediator of sex bias in glioblastoma. International symposium on inheritable central nervous system (CNS) cancer predisposition: A prologue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1