{"title":"将 77-81 GHz MIMO FMCW 雷达与分频天线相结合:三维目标定位案例研究","authors":"Patrick Kwiatkowski, Alexander Orth, Nils Pohl","doi":"10.1017/s1759078724000254","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce a compact 6 × 8 channel multiple-input multiple-output frequency-modulated continuous-wave radar system capable of determining the three-dimensional positions of targets despite utilizing a linear virtual array. The compact system, containing two cascaded radar transceiver ICs, has 48 virtual channels. We conduct a direction of arrival estimation with these virtual channels to determine the azimuth angle. To overcome the spatial limitation of the linear array, we use frequency-steered transmit antennas, which vary their main lobe direction during the frequency chirp, allowing the elevation angle to be determined by using a sliding window fast Fourier transform algorithm. In this study, we present the system’s concept along with the associated signal processing. By taking measurements in different scenarios, each with differently placed corner reflectors, we investigate the capability of the system to separate adjacent targets concerning range, azimuth, and elevation. These measurements are additionally employed to point out the design trade-offs inherent to the system.</p>","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"4 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining 77–81 GHz MIMO FMCW radar with frequency-steered antennas: a case study for 3D target localization\",\"authors\":\"Patrick Kwiatkowski, Alexander Orth, Nils Pohl\",\"doi\":\"10.1017/s1759078724000254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce a compact 6 × 8 channel multiple-input multiple-output frequency-modulated continuous-wave radar system capable of determining the three-dimensional positions of targets despite utilizing a linear virtual array. The compact system, containing two cascaded radar transceiver ICs, has 48 virtual channels. We conduct a direction of arrival estimation with these virtual channels to determine the azimuth angle. To overcome the spatial limitation of the linear array, we use frequency-steered transmit antennas, which vary their main lobe direction during the frequency chirp, allowing the elevation angle to be determined by using a sliding window fast Fourier transform algorithm. In this study, we present the system’s concept along with the associated signal processing. By taking measurements in different scenarios, each with differently placed corner reflectors, we investigate the capability of the system to separate adjacent targets concerning range, azimuth, and elevation. These measurements are additionally employed to point out the design trade-offs inherent to the system.</p>\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078724000254\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000254","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Combining 77–81 GHz MIMO FMCW radar with frequency-steered antennas: a case study for 3D target localization
In this paper, we introduce a compact 6 × 8 channel multiple-input multiple-output frequency-modulated continuous-wave radar system capable of determining the three-dimensional positions of targets despite utilizing a linear virtual array. The compact system, containing two cascaded radar transceiver ICs, has 48 virtual channels. We conduct a direction of arrival estimation with these virtual channels to determine the azimuth angle. To overcome the spatial limitation of the linear array, we use frequency-steered transmit antennas, which vary their main lobe direction during the frequency chirp, allowing the elevation angle to be determined by using a sliding window fast Fourier transform algorithm. In this study, we present the system’s concept along with the associated signal processing. By taking measurements in different scenarios, each with differently placed corner reflectors, we investigate the capability of the system to separate adjacent targets concerning range, azimuth, and elevation. These measurements are additionally employed to point out the design trade-offs inherent to the system.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.