多孔材料弹性涂层中两个冲头的接触问题

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Fracture Pub Date : 2024-03-11 DOI:10.1007/s10704-023-00761-4
Yonglin Yang, Shenghu Ding, Xing Li, Wenshuai Wang
{"title":"多孔材料弹性涂层中两个冲头的接触问题","authors":"Yonglin Yang,&nbsp;Shenghu Ding,&nbsp;Xing Li,&nbsp;Wenshuai Wang","doi":"10.1007/s10704-023-00761-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the contact problem of an elastic layer that is perfectly attached to a porous half-space by two rigid flat punches with collinear symmetry. Using integral transformation, the problem is condensed to a singular integral equation of the Cauchy type. Then, the exact expressions for the surface contact stress and surface interface displacement are provided. By using the Gauss–Chebyshev technique, the integral equations are solved numerically, and the variations of the unknown contact stresses and deformations for different parameters are addressed. The results indicate that stress concentration is typically higher on the outer edge of the contact area compared to the inner edge. This also explains why surface damage is more likely to occur on the outer edge in elastic and poroelastic materials. Due to the interaction between the two punches, there will be a superposition of normal displacements at the center. The deformation or bulging at the center can be managed by adjusting the parameter values, allowing the engineered material to fulfill its intended purpose. The potential applications of these research findings encompass safeguarding porous structures against contact-related deformation and damage.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 2-3","pages":"265 - 291"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact problem of two punches in an elastic coating attached to a porous material\",\"authors\":\"Yonglin Yang,&nbsp;Shenghu Ding,&nbsp;Xing Li,&nbsp;Wenshuai Wang\",\"doi\":\"10.1007/s10704-023-00761-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the contact problem of an elastic layer that is perfectly attached to a porous half-space by two rigid flat punches with collinear symmetry. Using integral transformation, the problem is condensed to a singular integral equation of the Cauchy type. Then, the exact expressions for the surface contact stress and surface interface displacement are provided. By using the Gauss–Chebyshev technique, the integral equations are solved numerically, and the variations of the unknown contact stresses and deformations for different parameters are addressed. The results indicate that stress concentration is typically higher on the outer edge of the contact area compared to the inner edge. This also explains why surface damage is more likely to occur on the outer edge in elastic and poroelastic materials. Due to the interaction between the two punches, there will be a superposition of normal displacements at the center. The deformation or bulging at the center can be managed by adjusting the parameter values, allowing the engineered material to fulfill its intended purpose. The potential applications of these research findings encompass safeguarding porous structures against contact-related deformation and damage.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"246 2-3\",\"pages\":\"265 - 291\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-023-00761-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00761-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的是弹性层与多孔半空间的接触问题,该弹性层由两个具有对偶对称性的刚性扁平冲头完全连接。利用积分变换,将问题浓缩为一个 Cauchy 型奇异积分方程。然后,给出了表面接触应力和表面界面位移的精确表达式。利用高斯-切比雪夫技术对积分方程进行数值求解,并探讨了不同参数下未知接触应力和变形的变化。结果表明,与内边缘相比,接触区域外边缘的应力集中程度通常更高。这也解释了为什么弹性和孔弹性材料的表面损伤更容易发生在外缘。由于两个冲头之间的相互作用,中心会出现法向位移的叠加。可以通过调整参数值来控制中心的变形或隆起,使工程材料达到预期目的。这些研究成果的潜在应用领域包括保护多孔结构免受与接触相关的变形和损坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contact problem of two punches in an elastic coating attached to a porous material

This paper investigates the contact problem of an elastic layer that is perfectly attached to a porous half-space by two rigid flat punches with collinear symmetry. Using integral transformation, the problem is condensed to a singular integral equation of the Cauchy type. Then, the exact expressions for the surface contact stress and surface interface displacement are provided. By using the Gauss–Chebyshev technique, the integral equations are solved numerically, and the variations of the unknown contact stresses and deformations for different parameters are addressed. The results indicate that stress concentration is typically higher on the outer edge of the contact area compared to the inner edge. This also explains why surface damage is more likely to occur on the outer edge in elastic and poroelastic materials. Due to the interaction between the two punches, there will be a superposition of normal displacements at the center. The deformation or bulging at the center can be managed by adjusting the parameter values, allowing the engineered material to fulfill its intended purpose. The potential applications of these research findings encompass safeguarding porous structures against contact-related deformation and damage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
期刊最新文献
Cohesive instability in elastomers: insights from a crosslinked Van der Waals fluid model Phase field modeling of anisotropic silicon crystalline cracking in 3D thin-walled photovoltaic laminates Peeling an architected interface: roles of softness and fractoadhesive length in adhesion toughening Heterogeneous fracture toughness of human cortical bone tissue Interpretable crack features for the representation of kinematic fields in the case of fatigue overloads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1