LncRNA MCM3AP-AS1通过miR-524-5p/RBM39轴促进三阴性乳腺癌的化疗耐药性

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2025-01-01 Epub Date: 2024-03-12 DOI:10.1007/s11010-023-04908-8
Yueping Wang, Xuedong Wang, Haiyi Sun, Ziyun Zhang, Juan Gu
{"title":"LncRNA MCM3AP-AS1通过miR-524-5p/RBM39轴促进三阴性乳腺癌的化疗耐药性","authors":"Yueping Wang, Xuedong Wang, Haiyi Sun, Ziyun Zhang, Juan Gu","doi":"10.1007/s11010-023-04908-8","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is the most lethal subtype of BC, with unfavorable treatment outcomes. Evidence suggests the engagement of lncRNA MCM3AP-AS1 in BC development. This study investigated the action of MCM3AP-AS1 in chemoresistance of TNBC cells. Drug-resistant TNBC cell lines SUM159PT<sup>R</sup> and MDA-MB-231<sup>R</sup> were constructed by exposure to increasing concentrations of doxorubicin/docetaxel (DOX/DXL). MCM3AP-AS1 and miR-524-5p expression levels were determined by RT-qPCR. RNA binding motif 39 (RBM39) level was measured using Western blot. Cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry. The targeted binding of miR-524-5p with MCM3AP-AS1 or RBM39 was predicted by ECORI database and validated by dual-luciferase assays. The gain-and-loss of function assays were conducted in cells to investigate the interactions among MCM3AP-AS1, miR-524-5p, and RBM39. TNBC xenograft mouse models were established through subcutaneous injection of MCM3AP-AS1-silencing MDA-MB-231<sup>R</sup> cells and intraperitoneally administrated with DOX/DXL to verify the role of MCM3AP-AS1 in vivo. MCM3AP-AS1 was upregulated in drug-resistant TNBC cells, and MCM3AP-AS1 silencing could sensitize drug-resistant TNBC cells to chemotherapeutic drugs by promoting apoptosis. MCM3AP-AS1 targeted miR-524-5p. After DOX/DXL treatment, miR-524-5p inhibition partially reversed the effect of MCM3AP-AS1 silencing on inhibiting chemoresistance and promoting apoptosis of drug-resistant TNBC cells. miR-524-5p targeted RBM39. Silencing MCM3AP-AS1 promoted apoptosis via the miR-524-5p/RBM39 axis, thereby enhancing chemosensitivity of drug-resistant TNBC cells. MCM3AP-AS1 knockdown upregulated miR-524-5p, downregulated RBM39, and restrained tumor development in vivo. MCM3AP-AS1 silencing potentiates apoptosis of drug-resistant TNBC cells by upregulating miR-524-5p and downregulating RBM39, thereby suppressing chemoresistance in TNBC.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"371-384"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA MCM3AP-AS1 promotes chemoresistance in triple-negative breast cancer through the miR-524-5p/RBM39 axis.\",\"authors\":\"Yueping Wang, Xuedong Wang, Haiyi Sun, Ziyun Zhang, Juan Gu\",\"doi\":\"10.1007/s11010-023-04908-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) is the most lethal subtype of BC, with unfavorable treatment outcomes. Evidence suggests the engagement of lncRNA MCM3AP-AS1 in BC development. This study investigated the action of MCM3AP-AS1 in chemoresistance of TNBC cells. Drug-resistant TNBC cell lines SUM159PT<sup>R</sup> and MDA-MB-231<sup>R</sup> were constructed by exposure to increasing concentrations of doxorubicin/docetaxel (DOX/DXL). MCM3AP-AS1 and miR-524-5p expression levels were determined by RT-qPCR. RNA binding motif 39 (RBM39) level was measured using Western blot. Cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry. The targeted binding of miR-524-5p with MCM3AP-AS1 or RBM39 was predicted by ECORI database and validated by dual-luciferase assays. The gain-and-loss of function assays were conducted in cells to investigate the interactions among MCM3AP-AS1, miR-524-5p, and RBM39. TNBC xenograft mouse models were established through subcutaneous injection of MCM3AP-AS1-silencing MDA-MB-231<sup>R</sup> cells and intraperitoneally administrated with DOX/DXL to verify the role of MCM3AP-AS1 in vivo. MCM3AP-AS1 was upregulated in drug-resistant TNBC cells, and MCM3AP-AS1 silencing could sensitize drug-resistant TNBC cells to chemotherapeutic drugs by promoting apoptosis. MCM3AP-AS1 targeted miR-524-5p. After DOX/DXL treatment, miR-524-5p inhibition partially reversed the effect of MCM3AP-AS1 silencing on inhibiting chemoresistance and promoting apoptosis of drug-resistant TNBC cells. miR-524-5p targeted RBM39. Silencing MCM3AP-AS1 promoted apoptosis via the miR-524-5p/RBM39 axis, thereby enhancing chemosensitivity of drug-resistant TNBC cells. MCM3AP-AS1 knockdown upregulated miR-524-5p, downregulated RBM39, and restrained tumor development in vivo. MCM3AP-AS1 silencing potentiates apoptosis of drug-resistant TNBC cells by upregulating miR-524-5p and downregulating RBM39, thereby suppressing chemoresistance in TNBC.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"371-384\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-023-04908-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-023-04908-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

三阴性乳腺癌(TNBC)是乳腺癌中最致命的亚型,治疗效果不佳。有证据表明,lncRNA MCM3AP-AS1参与了BC的发展。本研究调查了MCM3AP-AS1在TNBC细胞化疗耐药性中的作用。通过增加多柔比星/多西他赛(DOX/DXL)的浓度,构建了耐药 TNBC 细胞系 SUM159PTR 和 MDA-MB-231R。通过 RT-qPCR 测定 MCM3AP-AS1 和 miR-524-5p 的表达水平。采用 Western 印迹法测定 RNA 结合基序 39 (RBM39) 的水平。细胞活力和细胞凋亡通过 CCK-8 检测法和流式细胞术进行评估。通过 ECORI 数据库预测了 miR-524-5p 与 MCM3AP-AS1 或 RBM39 的靶向结合,并通过双荧光素酶试验进行了验证。为了研究 MCM3AP-AS1、miR-524-5p 和 RBM39 之间的相互作用,我们在细胞中进行了功能增益和丧失试验。通过皮下注射MCM3AP-AS1沉默的MDA-MB-231R细胞并腹腔注射DOX/DXL,建立了TNBC异种移植小鼠模型,以验证MCM3AP-AS1在体内的作用。MCM3AP-AS1在耐药TNBC细胞中上调,沉默MCM3AP-AS1可通过促进细胞凋亡使耐药TNBC细胞对化疗药物敏感。MCM3AP-AS1靶向miR-524-5p。经 DOX/DXL 处理后,抑制 miR-524-5p 可部分逆转沉默 MCM3AP-AS1 在抑制耐药 TNBC 细胞化疗耐药性和促进其凋亡方面的作用。沉默MCM3AP-AS1可通过miR-524-5p/RBM39轴促进细胞凋亡,从而增强耐药TNBC细胞的化疗敏感性。敲除MCM3AP-AS1可上调miR-524-5p,下调RBM39,抑制体内肿瘤的发展。沉默MCM3AP-AS1可通过上调miR-524-5p和下调RBM39促进耐药TNBC细胞的凋亡,从而抑制TNBC的化疗耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LncRNA MCM3AP-AS1 promotes chemoresistance in triple-negative breast cancer through the miR-524-5p/RBM39 axis.

Triple-negative breast cancer (TNBC) is the most lethal subtype of BC, with unfavorable treatment outcomes. Evidence suggests the engagement of lncRNA MCM3AP-AS1 in BC development. This study investigated the action of MCM3AP-AS1 in chemoresistance of TNBC cells. Drug-resistant TNBC cell lines SUM159PTR and MDA-MB-231R were constructed by exposure to increasing concentrations of doxorubicin/docetaxel (DOX/DXL). MCM3AP-AS1 and miR-524-5p expression levels were determined by RT-qPCR. RNA binding motif 39 (RBM39) level was measured using Western blot. Cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry. The targeted binding of miR-524-5p with MCM3AP-AS1 or RBM39 was predicted by ECORI database and validated by dual-luciferase assays. The gain-and-loss of function assays were conducted in cells to investigate the interactions among MCM3AP-AS1, miR-524-5p, and RBM39. TNBC xenograft mouse models were established through subcutaneous injection of MCM3AP-AS1-silencing MDA-MB-231R cells and intraperitoneally administrated with DOX/DXL to verify the role of MCM3AP-AS1 in vivo. MCM3AP-AS1 was upregulated in drug-resistant TNBC cells, and MCM3AP-AS1 silencing could sensitize drug-resistant TNBC cells to chemotherapeutic drugs by promoting apoptosis. MCM3AP-AS1 targeted miR-524-5p. After DOX/DXL treatment, miR-524-5p inhibition partially reversed the effect of MCM3AP-AS1 silencing on inhibiting chemoresistance and promoting apoptosis of drug-resistant TNBC cells. miR-524-5p targeted RBM39. Silencing MCM3AP-AS1 promoted apoptosis via the miR-524-5p/RBM39 axis, thereby enhancing chemosensitivity of drug-resistant TNBC cells. MCM3AP-AS1 knockdown upregulated miR-524-5p, downregulated RBM39, and restrained tumor development in vivo. MCM3AP-AS1 silencing potentiates apoptosis of drug-resistant TNBC cells by upregulating miR-524-5p and downregulating RBM39, thereby suppressing chemoresistance in TNBC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
GNA15 induces drug resistance in B cell acute lymphoblastic leukemia by promoting fatty acid oxidation via activation of the AMPK pathway. MAPK signaling mediated intestinal inflammation induced by endoplasmic reticulum stress and NOD2. The impact of combination of zofenopril and different diuretics on regression of myocardial reperfusion injury and oxidative status in spontaneously hypertensive rats. The role of resistin and adiponectin ratios with uric acid in assessing metabolic syndrome in type 2 diabetes. Advancing Parkinson's diagnosis: seed amplification assay for α-synuclein detection in minimally invasive samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1