{"title":"在低钌负载的双功能催化剂上将木质素衍生酚高效转化为环烷烃","authors":"Zhiyu Xiang, Weichen Wang, Fangyuan Zhou, Hongke Zhang, Yidan Wang, Wanbin Zhu, Hongliang Wang","doi":"10.1016/j.fuproc.2024.108073","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrodeoxygenation (HDO) reactions are extensively employed in the conversion of biomass to advanced fuels, which rely heavily on bifunctional catalysts that contain both a metal component and an acidic component. A significant challenge in the development of HDO catalysts is the need to reduce costs while simultaneously enhancing catalytic efficiency. Here, a series of Ru@W/ZrO<sub>2</sub> catalysts with an extremely low loading of Ru (0.5 wt%) were successfully synthesized using different Ru or W loading sequences and different Ru/W mass ratios. The catalysts were applied in the HDO reaction of lignin-derived phenols, and their physical and chemical characteristics were revealed by various characterization techniques, including XRD, H<sub>2</sub>-TPD, NH<sub>3</sub>-TPD, and XPS. The results suggest that the synthesis method with post-loading Ru leads to improved exposure and utilization of the low-loaded Ru, which effectively serves as the active sites for hydrogenation in catalytic reactions. Under the same reaction conditions, the bifunctional catalyst with post-loading of Ru achieved a complete conversion of phenol into cyclohexane, while the catalyst with simultaneous loading of Ru and W only yielded 42% of cyclohexane. In addition, the Ru/W ratios have also shown significant effects on the HDO performance of the catalyst. The catalyst exhibits the highest hydrogenation activity when the Ru/W ratio is 10, which is further supported by kinetic experiments. This study highlights the significance of the loading sequence of noble metals and the metal/acid ratio in the synthesis of highly active bifunctional catalysts, and also lays the groundwork for the efficient utilization of noble metals in biomass HDO conversion.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"256 ","pages":"Article 108073"},"PeriodicalIF":7.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000432/pdfft?md5=463d8e92390744fc92861efb568cf33e&pid=1-s2.0-S0378382024000432-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient conversion of lignin-derived phenols to cycloalkanes over bifunctional catalysts with low loading of ruthenium\",\"authors\":\"Zhiyu Xiang, Weichen Wang, Fangyuan Zhou, Hongke Zhang, Yidan Wang, Wanbin Zhu, Hongliang Wang\",\"doi\":\"10.1016/j.fuproc.2024.108073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrodeoxygenation (HDO) reactions are extensively employed in the conversion of biomass to advanced fuels, which rely heavily on bifunctional catalysts that contain both a metal component and an acidic component. A significant challenge in the development of HDO catalysts is the need to reduce costs while simultaneously enhancing catalytic efficiency. Here, a series of Ru@W/ZrO<sub>2</sub> catalysts with an extremely low loading of Ru (0.5 wt%) were successfully synthesized using different Ru or W loading sequences and different Ru/W mass ratios. The catalysts were applied in the HDO reaction of lignin-derived phenols, and their physical and chemical characteristics were revealed by various characterization techniques, including XRD, H<sub>2</sub>-TPD, NH<sub>3</sub>-TPD, and XPS. The results suggest that the synthesis method with post-loading Ru leads to improved exposure and utilization of the low-loaded Ru, which effectively serves as the active sites for hydrogenation in catalytic reactions. Under the same reaction conditions, the bifunctional catalyst with post-loading of Ru achieved a complete conversion of phenol into cyclohexane, while the catalyst with simultaneous loading of Ru and W only yielded 42% of cyclohexane. In addition, the Ru/W ratios have also shown significant effects on the HDO performance of the catalyst. The catalyst exhibits the highest hydrogenation activity when the Ru/W ratio is 10, which is further supported by kinetic experiments. This study highlights the significance of the loading sequence of noble metals and the metal/acid ratio in the synthesis of highly active bifunctional catalysts, and also lays the groundwork for the efficient utilization of noble metals in biomass HDO conversion.</p></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"256 \",\"pages\":\"Article 108073\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378382024000432/pdfft?md5=463d8e92390744fc92861efb568cf33e&pid=1-s2.0-S0378382024000432-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382024000432\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024000432","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Efficient conversion of lignin-derived phenols to cycloalkanes over bifunctional catalysts with low loading of ruthenium
Hydrodeoxygenation (HDO) reactions are extensively employed in the conversion of biomass to advanced fuels, which rely heavily on bifunctional catalysts that contain both a metal component and an acidic component. A significant challenge in the development of HDO catalysts is the need to reduce costs while simultaneously enhancing catalytic efficiency. Here, a series of Ru@W/ZrO2 catalysts with an extremely low loading of Ru (0.5 wt%) were successfully synthesized using different Ru or W loading sequences and different Ru/W mass ratios. The catalysts were applied in the HDO reaction of lignin-derived phenols, and their physical and chemical characteristics were revealed by various characterization techniques, including XRD, H2-TPD, NH3-TPD, and XPS. The results suggest that the synthesis method with post-loading Ru leads to improved exposure and utilization of the low-loaded Ru, which effectively serves as the active sites for hydrogenation in catalytic reactions. Under the same reaction conditions, the bifunctional catalyst with post-loading of Ru achieved a complete conversion of phenol into cyclohexane, while the catalyst with simultaneous loading of Ru and W only yielded 42% of cyclohexane. In addition, the Ru/W ratios have also shown significant effects on the HDO performance of the catalyst. The catalyst exhibits the highest hydrogenation activity when the Ru/W ratio is 10, which is further supported by kinetic experiments. This study highlights the significance of the loading sequence of noble metals and the metal/acid ratio in the synthesis of highly active bifunctional catalysts, and also lays the groundwork for the efficient utilization of noble metals in biomass HDO conversion.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.