{"title":"1+1$$ 维中的邓克尔-福克-普朗克方程","authors":"R. D. Mota, D. Ojeda-Guillén, M. A. Xicoténcatl","doi":"10.1007/s00601-024-01898-1","DOIUrl":null,"url":null,"abstract":"<div><p>By replacing the spatial derivative with the Dunkl derivative, we generalize the Fokker-Planck equation in (1+1) dimensions. We obtain the Dunkl–Fokker–Planck eigenvalues equation and solve it for the harmonic oscillator plus a centrifugal-type potential. Furthermore, when the drift function is odd, we reduce our results to those of the recently developed Wigner–Dunkl supersymmetry.\n</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"65 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dunkl–Fokker–Planck Equation in \\\\(1+1\\\\) Dimensions\",\"authors\":\"R. D. Mota, D. Ojeda-Guillén, M. A. Xicoténcatl\",\"doi\":\"10.1007/s00601-024-01898-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By replacing the spatial derivative with the Dunkl derivative, we generalize the Fokker-Planck equation in (1+1) dimensions. We obtain the Dunkl–Fokker–Planck eigenvalues equation and solve it for the harmonic oscillator plus a centrifugal-type potential. Furthermore, when the drift function is odd, we reduce our results to those of the recently developed Wigner–Dunkl supersymmetry.\\n</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":\"65 2\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-024-01898-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01898-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The Dunkl–Fokker–Planck Equation in \(1+1\) Dimensions
By replacing the spatial derivative with the Dunkl derivative, we generalize the Fokker-Planck equation in (1+1) dimensions. We obtain the Dunkl–Fokker–Planck eigenvalues equation and solve it for the harmonic oscillator plus a centrifugal-type potential. Furthermore, when the drift function is odd, we reduce our results to those of the recently developed Wigner–Dunkl supersymmetry.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).