Tamer E. Fahim, Sherif I. Rabia, Ahmed H. Abd El-Malek, Waheed K. Zahra
{"title":"利用混合学科提高多类移动边缘计算系统的信息新鲜度","authors":"Tamer E. Fahim, Sherif I. Rabia, Ahmed H. Abd El-Malek, Waheed K. Zahra","doi":"10.1007/s00607-024-01278-x","DOIUrl":null,"url":null,"abstract":"<p>Timely status updating in mobile edge computing (MEC) systems has recently gained the utmost interest in internet of things (IoT) networks, where status updates may need higher computations to be interpreted. Moreover, in real-life situations, the status update streams may also be of different priority classes according to their importance and timeliness constraints. The classical disciplines used for priority service differentiation, preemptive and non-preemptive disciplines, pose a dilemma of information freshness dissatisfaction for the whole priority network. This work proposes a hybrid preemptive/non-preemptive discipline under an M/M/1/2 priority queueing model to regulate the priority-based contention of the status update streams in MEC systems. For this hybrid discipline, a probabilistic discretionary rule for preemption is deployed to govern the server and buffer access independently, introducing distinct probability parameters to control the system performance. The stochastic hybrid system approach is utilized to analyze the average age of information (AoI) along with its higher moments for any number of classes. Then, a numerical study on a three-class network is conducted by evaluating the average AoI performance and the corresponding dispersion. The numerical observations underpin the significance of the hybrid-discipline parameters in ensuring the reliability of the whole priority network. Hence, four different approaches are introduced to demonstrate the setting of these parameters. Under these approaches, some outstanding features are manifested: exploiting the buffering resources efficiently, conserving the aggregate sensing power, and optimizing the whole network satisfaction. For this last feature, a near-optimal low-complex heuristic method is proposed.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"7 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing information freshness in multi-class mobile edge computing systems using a hybrid discipline\",\"authors\":\"Tamer E. Fahim, Sherif I. Rabia, Ahmed H. Abd El-Malek, Waheed K. Zahra\",\"doi\":\"10.1007/s00607-024-01278-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Timely status updating in mobile edge computing (MEC) systems has recently gained the utmost interest in internet of things (IoT) networks, where status updates may need higher computations to be interpreted. Moreover, in real-life situations, the status update streams may also be of different priority classes according to their importance and timeliness constraints. The classical disciplines used for priority service differentiation, preemptive and non-preemptive disciplines, pose a dilemma of information freshness dissatisfaction for the whole priority network. This work proposes a hybrid preemptive/non-preemptive discipline under an M/M/1/2 priority queueing model to regulate the priority-based contention of the status update streams in MEC systems. For this hybrid discipline, a probabilistic discretionary rule for preemption is deployed to govern the server and buffer access independently, introducing distinct probability parameters to control the system performance. The stochastic hybrid system approach is utilized to analyze the average age of information (AoI) along with its higher moments for any number of classes. Then, a numerical study on a three-class network is conducted by evaluating the average AoI performance and the corresponding dispersion. The numerical observations underpin the significance of the hybrid-discipline parameters in ensuring the reliability of the whole priority network. Hence, four different approaches are introduced to demonstrate the setting of these parameters. Under these approaches, some outstanding features are manifested: exploiting the buffering resources efficiently, conserving the aggregate sensing power, and optimizing the whole network satisfaction. For this last feature, a near-optimal low-complex heuristic method is proposed.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01278-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01278-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Enhancing information freshness in multi-class mobile edge computing systems using a hybrid discipline
Timely status updating in mobile edge computing (MEC) systems has recently gained the utmost interest in internet of things (IoT) networks, where status updates may need higher computations to be interpreted. Moreover, in real-life situations, the status update streams may also be of different priority classes according to their importance and timeliness constraints. The classical disciplines used for priority service differentiation, preemptive and non-preemptive disciplines, pose a dilemma of information freshness dissatisfaction for the whole priority network. This work proposes a hybrid preemptive/non-preemptive discipline under an M/M/1/2 priority queueing model to regulate the priority-based contention of the status update streams in MEC systems. For this hybrid discipline, a probabilistic discretionary rule for preemption is deployed to govern the server and buffer access independently, introducing distinct probability parameters to control the system performance. The stochastic hybrid system approach is utilized to analyze the average age of information (AoI) along with its higher moments for any number of classes. Then, a numerical study on a three-class network is conducted by evaluating the average AoI performance and the corresponding dispersion. The numerical observations underpin the significance of the hybrid-discipline parameters in ensuring the reliability of the whole priority network. Hence, four different approaches are introduced to demonstrate the setting of these parameters. Under these approaches, some outstanding features are manifested: exploiting the buffering resources efficiently, conserving the aggregate sensing power, and optimizing the whole network satisfaction. For this last feature, a near-optimal low-complex heuristic method is proposed.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.