{"title":"将偏振分复用技术与铁磁非互斥性相结合,为全双工无线系统实现带内超高隔离度","authors":"","doi":"10.1016/j.eng.2024.02.007","DOIUrl":null,"url":null,"abstract":"<div><p>The in-band full-duplex (IBFD) wireless system is a promising candidate for 6G and beyond, as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and reception of signals. Enabling IBFD systems requires a substantial mitigation of a transmitter (Tx)’s strong self-interference (SI) signal into the receiver (Rx) channel. However, current state-of-the-art approaches to tackle this challenge are inefficient in terms of performance, cost, and complexity, hindering the commercialization of IBFD techniques. In this work, we devise and demonstrate an innovative approach to realize IBFD systems that exhibit superior performance with a low-cost and less-complex architecture in an all-passive module. Our scheme is based on meticulously combining polarization-division multiplexing (PDM) with ferromagnetic nonreciprocity to achieve ultra-high isolation between Tx and Rx channels. Such an unprecedented conception has become feasible thanks to a concurrent dual-mode circulator—a new component introduced for the first time—as a key feature of our module, and a dual-mode waveguide that transforms two orthogonally polarized waves into two orthogonal waveguide modes. In addition, we propose a unique passive tunable secondary SI cancellation (SIC) mechanism, which is embedded within the proposed module and boosts the isolation over a relatively broad bandwidth. We report, solely in the analog domain, experimental isolation levels of 50, 70, and 80 dB over 340, 101, and 33 MHz bandwidth at the center frequency of interest, respectively, with excellent tuning capability. Furthermore, the module is tested in two real IBFD scenarios to assess its performance in connection with Tx-to-Rx leakage and modulation error in the presence of a Tx’s strong interference signal.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"40 ","pages":"Pages 179-187"},"PeriodicalIF":10.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924001310/pdfft?md5=43d6c70fdb04348c3c709d1b0f8a7aa5&pid=1-s2.0-S2095809924001310-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Combining Polarization-Division Multiplexing and Ferromagnetic Nonreciprocity to Achieve In-Band Ultra-High Isolation for Full-Duplex Wireless Systems\",\"authors\":\"\",\"doi\":\"10.1016/j.eng.2024.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The in-band full-duplex (IBFD) wireless system is a promising candidate for 6G and beyond, as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and reception of signals. Enabling IBFD systems requires a substantial mitigation of a transmitter (Tx)’s strong self-interference (SI) signal into the receiver (Rx) channel. However, current state-of-the-art approaches to tackle this challenge are inefficient in terms of performance, cost, and complexity, hindering the commercialization of IBFD techniques. In this work, we devise and demonstrate an innovative approach to realize IBFD systems that exhibit superior performance with a low-cost and less-complex architecture in an all-passive module. Our scheme is based on meticulously combining polarization-division multiplexing (PDM) with ferromagnetic nonreciprocity to achieve ultra-high isolation between Tx and Rx channels. Such an unprecedented conception has become feasible thanks to a concurrent dual-mode circulator—a new component introduced for the first time—as a key feature of our module, and a dual-mode waveguide that transforms two orthogonally polarized waves into two orthogonal waveguide modes. In addition, we propose a unique passive tunable secondary SI cancellation (SIC) mechanism, which is embedded within the proposed module and boosts the isolation over a relatively broad bandwidth. We report, solely in the analog domain, experimental isolation levels of 50, 70, and 80 dB over 340, 101, and 33 MHz bandwidth at the center frequency of interest, respectively, with excellent tuning capability. Furthermore, the module is tested in two real IBFD scenarios to assess its performance in connection with Tx-to-Rx leakage and modulation error in the presence of a Tx’s strong interference signal.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"40 \",\"pages\":\"Pages 179-187\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095809924001310/pdfft?md5=43d6c70fdb04348c3c709d1b0f8a7aa5&pid=1-s2.0-S2095809924001310-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924001310\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924001310","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Combining Polarization-Division Multiplexing and Ferromagnetic Nonreciprocity to Achieve In-Band Ultra-High Isolation for Full-Duplex Wireless Systems
The in-band full-duplex (IBFD) wireless system is a promising candidate for 6G and beyond, as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and reception of signals. Enabling IBFD systems requires a substantial mitigation of a transmitter (Tx)’s strong self-interference (SI) signal into the receiver (Rx) channel. However, current state-of-the-art approaches to tackle this challenge are inefficient in terms of performance, cost, and complexity, hindering the commercialization of IBFD techniques. In this work, we devise and demonstrate an innovative approach to realize IBFD systems that exhibit superior performance with a low-cost and less-complex architecture in an all-passive module. Our scheme is based on meticulously combining polarization-division multiplexing (PDM) with ferromagnetic nonreciprocity to achieve ultra-high isolation between Tx and Rx channels. Such an unprecedented conception has become feasible thanks to a concurrent dual-mode circulator—a new component introduced for the first time—as a key feature of our module, and a dual-mode waveguide that transforms two orthogonally polarized waves into two orthogonal waveguide modes. In addition, we propose a unique passive tunable secondary SI cancellation (SIC) mechanism, which is embedded within the proposed module and boosts the isolation over a relatively broad bandwidth. We report, solely in the analog domain, experimental isolation levels of 50, 70, and 80 dB over 340, 101, and 33 MHz bandwidth at the center frequency of interest, respectively, with excellent tuning capability. Furthermore, the module is tested in two real IBFD scenarios to assess its performance in connection with Tx-to-Rx leakage and modulation error in the presence of a Tx’s strong interference signal.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.