冠状动脉血液动力学模拟研究。

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2024-04-01 Epub Date: 2024-03-19 DOI:10.1177/09544119241231028
Leilei Cheng, Zhenlei Chen, Fengyuan Yang, Rongyue Zheng, Wenming He, Fan Shi, Chang Liu, Fachang Wang, Li Wang, Yanqing Xie, Haoxuan Lu
{"title":"冠状动脉血液动力学模拟研究。","authors":"Leilei Cheng, Zhenlei Chen, Fengyuan Yang, Rongyue Zheng, Wenming He, Fan Shi, Chang Liu, Fachang Wang, Li Wang, Yanqing Xie, Haoxuan Lu","doi":"10.1177/09544119241231028","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a two-way fluid-structure coupling model is developed to simulate and analyze the hemodynamic process based on dynamic coronary angiography, and examine the influence of different hemodynamic parameters on coronary arteries in typical coronary stenosis lesions. Using the measured FFR pressure data of a patient, the pressure-time function curve is fitted to ensure the accuracy of the boundary conditions. The average error of the simulation pressure results compared to the test data is 6.74%. In addition, the results related to blood flow, pressure contour and wall shear stress contour in a typical cardiac cycle are obtained by simulation analysis. These results are found to be in good agreement with the laws of the real cardiac cycle, which verifies the rationality of the simulation. In conclusion, based on the modeling and hemodynamic simulation analysis process of dynamic coronary angiography, this paper proposes a method to assist the analysis and evaluation of coronary hemodynamic and functional parameters, which has certain practical significance.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"444-454"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coronary hemodynamic simulation study.\",\"authors\":\"Leilei Cheng, Zhenlei Chen, Fengyuan Yang, Rongyue Zheng, Wenming He, Fan Shi, Chang Liu, Fachang Wang, Li Wang, Yanqing Xie, Haoxuan Lu\",\"doi\":\"10.1177/09544119241231028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a two-way fluid-structure coupling model is developed to simulate and analyze the hemodynamic process based on dynamic coronary angiography, and examine the influence of different hemodynamic parameters on coronary arteries in typical coronary stenosis lesions. Using the measured FFR pressure data of a patient, the pressure-time function curve is fitted to ensure the accuracy of the boundary conditions. The average error of the simulation pressure results compared to the test data is 6.74%. In addition, the results related to blood flow, pressure contour and wall shear stress contour in a typical cardiac cycle are obtained by simulation analysis. These results are found to be in good agreement with the laws of the real cardiac cycle, which verifies the rationality of the simulation. In conclusion, based on the modeling and hemodynamic simulation analysis process of dynamic coronary angiography, this paper proposes a method to assist the analysis and evaluation of coronary hemodynamic and functional parameters, which has certain practical significance.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"444-454\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119241231028\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119241231028","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文以动态冠状动脉造影为基础,建立了流固耦合双向模型,模拟分析血流动力学过程,研究典型冠状动脉狭窄病变中不同血流动力学参数对冠状动脉的影响。利用患者的实测 FFR 压力数据,拟合压力-时间函数曲线,以确保边界条件的准确性。模拟压力结果与测试数据的平均误差为 6.74%。此外,模拟分析还获得了典型心动周期中的血流、压力轮廓和壁剪应力轮廓的相关结果。这些结果与真实心动周期的规律十分吻合,验证了模拟的合理性。总之,本文基于动态冠状动脉造影的建模和血流动力学模拟分析过程,提出了一种辅助分析和评价冠状动脉血流动力学和功能参数的方法,具有一定的现实意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coronary hemodynamic simulation study.

In this paper, a two-way fluid-structure coupling model is developed to simulate and analyze the hemodynamic process based on dynamic coronary angiography, and examine the influence of different hemodynamic parameters on coronary arteries in typical coronary stenosis lesions. Using the measured FFR pressure data of a patient, the pressure-time function curve is fitted to ensure the accuracy of the boundary conditions. The average error of the simulation pressure results compared to the test data is 6.74%. In addition, the results related to blood flow, pressure contour and wall shear stress contour in a typical cardiac cycle are obtained by simulation analysis. These results are found to be in good agreement with the laws of the real cardiac cycle, which verifies the rationality of the simulation. In conclusion, based on the modeling and hemodynamic simulation analysis process of dynamic coronary angiography, this paper proposes a method to assist the analysis and evaluation of coronary hemodynamic and functional parameters, which has certain practical significance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
期刊最新文献
Improving arterial stiffness prediction with machine learning utilizing hemodynamics and biomechanical features derived from phase contrast magnetic resonance imaging. Synthesis methods of Mg-based scaffolds and their applications in tissue engineering: A review. User experience of lower extremity exoskeletons and its improvement methodologies: A narrative review. A wavelet and local binary pattern-based feature descriptor for the detection of chronic infection through thoracic X-ray images. Optimization and control of robotic vertebral plate grinding: Predictive modeling, parameter optimization, and fuzzy control strategies for minimizing bone damage in laminectomy procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1