Radosław Włodarczyk, Joanna Drzewińska-Chańko, Maciej Kamiński, Włodzimierz Meissner, Jan Rapczyński, Katarzyna Janik-Superson, Dawid Krawczyk, Dominik Strapagiel, Agnieszka Ożarowska, Katarzyna Stępniewska, Piotr Minias
{"title":"中途停留栖息地的选择促使迁徙岸鸟的肠道微生物组组成和病原体获取发生变化。","authors":"Radosław Włodarczyk, Joanna Drzewińska-Chańko, Maciej Kamiński, Włodzimierz Meissner, Jan Rapczyński, Katarzyna Janik-Superson, Dawid Krawczyk, Dominik Strapagiel, Agnieszka Ożarowska, Katarzyna Stępniewska, Piotr Minias","doi":"10.1093/femsec/fiae040","DOIUrl":null,"url":null,"abstract":"<p><p>Long-distance host movements play a major regulatory role in shaping microbial communities of their digestive tract. Here, we studied gut microbiota composition during seasonal migration in five shorebird species (Charadrii) that use different migratory (stopover) habitats. Our analyses revealed significant interspecific variation in both composition and diversity of gut microbiome, but the effect of host identity was weak. A strong variation in gut microbiota was observed between coastal and inland (dam reservoir and river valley) stopover habitats within species. Comparisons between host age classes provided support for an increasing alpha diversity of gut microbiota during ontogeny and an age-related remodeling of microbiome composition. There was, however, no correlation between microbiome and diet composition across study species. Finally, we detected high prevalence of avian pathogens, which may cause zoonotic diseases in humans (e.g. Vibrio cholerae) and we identified stopover habitat as one of the major axes of variation in the bacterial pathogen exposure risk in shorebirds. Our study not only sheds new light on ecological processes that shape avian gut microbiota, but also has implications for our better understanding of host-pathogen interface and the role of birds in long-distance transmission of pathogens.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008731/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stopover habitat selection drives variation in the gut microbiome composition and pathogen acquisition by migrating shorebirds.\",\"authors\":\"Radosław Włodarczyk, Joanna Drzewińska-Chańko, Maciej Kamiński, Włodzimierz Meissner, Jan Rapczyński, Katarzyna Janik-Superson, Dawid Krawczyk, Dominik Strapagiel, Agnieszka Ożarowska, Katarzyna Stępniewska, Piotr Minias\",\"doi\":\"10.1093/femsec/fiae040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long-distance host movements play a major regulatory role in shaping microbial communities of their digestive tract. Here, we studied gut microbiota composition during seasonal migration in five shorebird species (Charadrii) that use different migratory (stopover) habitats. Our analyses revealed significant interspecific variation in both composition and diversity of gut microbiome, but the effect of host identity was weak. A strong variation in gut microbiota was observed between coastal and inland (dam reservoir and river valley) stopover habitats within species. Comparisons between host age classes provided support for an increasing alpha diversity of gut microbiota during ontogeny and an age-related remodeling of microbiome composition. There was, however, no correlation between microbiome and diet composition across study species. Finally, we detected high prevalence of avian pathogens, which may cause zoonotic diseases in humans (e.g. Vibrio cholerae) and we identified stopover habitat as one of the major axes of variation in the bacterial pathogen exposure risk in shorebirds. Our study not only sheds new light on ecological processes that shape avian gut microbiota, but also has implications for our better understanding of host-pathogen interface and the role of birds in long-distance transmission of pathogens.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiae040\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae040","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Stopover habitat selection drives variation in the gut microbiome composition and pathogen acquisition by migrating shorebirds.
Long-distance host movements play a major regulatory role in shaping microbial communities of their digestive tract. Here, we studied gut microbiota composition during seasonal migration in five shorebird species (Charadrii) that use different migratory (stopover) habitats. Our analyses revealed significant interspecific variation in both composition and diversity of gut microbiome, but the effect of host identity was weak. A strong variation in gut microbiota was observed between coastal and inland (dam reservoir and river valley) stopover habitats within species. Comparisons between host age classes provided support for an increasing alpha diversity of gut microbiota during ontogeny and an age-related remodeling of microbiome composition. There was, however, no correlation between microbiome and diet composition across study species. Finally, we detected high prevalence of avian pathogens, which may cause zoonotic diseases in humans (e.g. Vibrio cholerae) and we identified stopover habitat as one of the major axes of variation in the bacterial pathogen exposure risk in shorebirds. Our study not only sheds new light on ecological processes that shape avian gut microbiota, but also has implications for our better understanding of host-pathogen interface and the role of birds in long-distance transmission of pathogens.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms