Bo Wu, Dunwei Liao, Zhenke Ding, Kai Yang, Yi Liu, Di Sang, Qiang An, Yunqi Fu
{"title":"用于增强基于雷德贝格原子的电场测量的局域振荡器端口集成谐振器","authors":"Bo Wu, Dunwei Liao, Zhenke Ding, Kai Yang, Yi Liu, Di Sang, Qiang An, Yunqi Fu","doi":"10.1140/epjqt/s40507-024-00231-3","DOIUrl":null,"url":null,"abstract":"<div><p>Rydberg atom-based superheterodyne with additional local oscillator (LO) signal is a novel approach to detect electric field with high measured sensitivity. However, the LO signal is often supplied to the atomic vapor cell by free-space illumination, which lacks mobility and integration for practical applications. Here, we present a LO port integrated split-ring resonator for realizing high sensitivity-enhanced electric field measurements. The LO signal is sent directly to the resonator through a parallel-plate waveguide, which is shown to achieve a sensitivity enhancement of 32 dB. The integrated resonator has an electrical size of 0.088<i>λ</i> and the feed port S11 reaches −38.2 dB.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00231-3","citationCount":"0","resultStr":"{\"title\":\"Local oscillator port integrated resonator for Rydberg atom-based electric field measurement enhancement\",\"authors\":\"Bo Wu, Dunwei Liao, Zhenke Ding, Kai Yang, Yi Liu, Di Sang, Qiang An, Yunqi Fu\",\"doi\":\"10.1140/epjqt/s40507-024-00231-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rydberg atom-based superheterodyne with additional local oscillator (LO) signal is a novel approach to detect electric field with high measured sensitivity. However, the LO signal is often supplied to the atomic vapor cell by free-space illumination, which lacks mobility and integration for practical applications. Here, we present a LO port integrated split-ring resonator for realizing high sensitivity-enhanced electric field measurements. The LO signal is sent directly to the resonator through a parallel-plate waveguide, which is shown to achieve a sensitivity enhancement of 32 dB. The integrated resonator has an electrical size of 0.088<i>λ</i> and the feed port S11 reaches −38.2 dB.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00231-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00231-3\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00231-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Local oscillator port integrated resonator for Rydberg atom-based electric field measurement enhancement
Rydberg atom-based superheterodyne with additional local oscillator (LO) signal is a novel approach to detect electric field with high measured sensitivity. However, the LO signal is often supplied to the atomic vapor cell by free-space illumination, which lacks mobility and integration for practical applications. Here, we present a LO port integrated split-ring resonator for realizing high sensitivity-enhanced electric field measurements. The LO signal is sent directly to the resonator through a parallel-plate waveguide, which is shown to achieve a sensitivity enhancement of 32 dB. The integrated resonator has an electrical size of 0.088λ and the feed port S11 reaches −38.2 dB.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.