利用潜热传递实现高功率密度的电积冷却系统

Julius Metzdorf, Patrick Corhan, David Bach, Sakyo Hirose, Dirk Lellinger, Stefan Mönch, Frank Kühnemann, Olaf Schäfer-Welsen, Kilian Bartholomé
{"title":"利用潜热传递实现高功率密度的电积冷却系统","authors":"Julius Metzdorf, Patrick Corhan, David Bach, Sakyo Hirose, Dirk Lellinger, Stefan Mönch, Frank Kühnemann, Olaf Schäfer-Welsen, Kilian Bartholomé","doi":"10.1038/s44172-024-00199-z","DOIUrl":null,"url":null,"abstract":"Electrocalorics (EC) is potentially more efficient than refrigeration and heat pumps based on compressors and does not need detrimental fluids. Current EC-prototypes use solid-state contact or forced convection with liquids to transfer the heat generated from the EC-material, which inhibits high cycle frequencies and thus limits power density. Here we present a heatpipe system solution, where the heat transfer is realized through condensation and evaporation of ethanol as a heat transfer fluid. Our prototype with lead scandium tantalate (PST) EC-material working at 5 Hz shows a specific cooling power of 1.5 W g−1. This is one order of magnitude more than previously reported for ceramic EC-prototypes. Overcoming the limits of slow heat transfer is essential to reach high specific cooling powers enabling a future commercial success of the technology. Julius Metzdorf and colleagues present a heatpipe system that combines solid-state electrocaloric material with condensation and evaporation of ethanol fluid. The results demonstrate an enhanced cooling power density, which is one order of magnitude higher than that of traditional ceramic electrocaloric systems.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00199-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrocaloric cooling system utilizing latent heat transfer for high power density\",\"authors\":\"Julius Metzdorf, Patrick Corhan, David Bach, Sakyo Hirose, Dirk Lellinger, Stefan Mönch, Frank Kühnemann, Olaf Schäfer-Welsen, Kilian Bartholomé\",\"doi\":\"10.1038/s44172-024-00199-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocalorics (EC) is potentially more efficient than refrigeration and heat pumps based on compressors and does not need detrimental fluids. Current EC-prototypes use solid-state contact or forced convection with liquids to transfer the heat generated from the EC-material, which inhibits high cycle frequencies and thus limits power density. Here we present a heatpipe system solution, where the heat transfer is realized through condensation and evaporation of ethanol as a heat transfer fluid. Our prototype with lead scandium tantalate (PST) EC-material working at 5 Hz shows a specific cooling power of 1.5 W g−1. This is one order of magnitude more than previously reported for ceramic EC-prototypes. Overcoming the limits of slow heat transfer is essential to reach high specific cooling powers enabling a future commercial success of the technology. Julius Metzdorf and colleagues present a heatpipe system that combines solid-state electrocaloric material with condensation and evaporation of ethanol fluid. The results demonstrate an enhanced cooling power density, which is one order of magnitude higher than that of traditional ceramic electrocaloric systems.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00199-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00199-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00199-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与基于压缩机的制冷和热泵相比,电热效应(EC)可能更加高效,而且不需要有害的液体。目前的电解质原型使用固态接触或液体强制对流来传递电解质材料产生的热量,这阻碍了高循环频率,从而限制了功率密度。在这里,我们提出了一种热管系统解决方案,通过乙醇作为传热液体的冷凝和蒸发来实现热量传递。我们使用钽酸钪铅 (PST) EC 材料制作的原型在 5 Hz 频率下工作时,比冷却功率为 1.5 W g-1。这比之前报道的陶瓷导电率原型高出一个数量级。要想达到较高的比冷却功率,使该技术在未来取得商业上的成功,克服传热慢的限制至关重要。Julius Metzdorf 及其同事介绍了一种热管系统,该系统将固态电致冷材料与乙醇流体的冷凝和蒸发相结合。研究结果表明,该系统的冷却功率密度比传统陶瓷电致冷系统高出一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrocaloric cooling system utilizing latent heat transfer for high power density
Electrocalorics (EC) is potentially more efficient than refrigeration and heat pumps based on compressors and does not need detrimental fluids. Current EC-prototypes use solid-state contact or forced convection with liquids to transfer the heat generated from the EC-material, which inhibits high cycle frequencies and thus limits power density. Here we present a heatpipe system solution, where the heat transfer is realized through condensation and evaporation of ethanol as a heat transfer fluid. Our prototype with lead scandium tantalate (PST) EC-material working at 5 Hz shows a specific cooling power of 1.5 W g−1. This is one order of magnitude more than previously reported for ceramic EC-prototypes. Overcoming the limits of slow heat transfer is essential to reach high specific cooling powers enabling a future commercial success of the technology. Julius Metzdorf and colleagues present a heatpipe system that combines solid-state electrocaloric material with condensation and evaporation of ethanol fluid. The results demonstrate an enhanced cooling power density, which is one order of magnitude higher than that of traditional ceramic electrocaloric systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A platform-agnostic deep reinforcement learning framework for effective Sim2Real transfer towards autonomous driving Cryogenic quantum computer control signal generation using high-electron-mobility transistors A semi-transparent thermoelectric glazing nanogenerator with aluminium doped zinc oxide and copper iodide thin films Towards a general computed tomography image segmentation model for anatomical structures and lesions 5 G new radio fiber-wireless converged systems by injection locking multi-optical carrier into directly-modulated lasers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1