Chaimaa Essiber, S. Akazdama, Bouchaib Bahlaouan, Said ElAntri, Ghita RadiBenjelloun, N. Boutaleb, Mohamed Bennani
{"title":"摩洛哥萨菲地区丰富的伊利石粘土的特性及其在处理含有合成染料的工业废水中的应用","authors":"Chaimaa Essiber, S. Akazdama, Bouchaib Bahlaouan, Said ElAntri, Ghita RadiBenjelloun, N. Boutaleb, Mohamed Bennani","doi":"10.59429/ace.v7i2.2033","DOIUrl":null,"url":null,"abstract":"The objective of this work is to valorize abundant illitic clay from Morocco in the treatment of industrial effluents likely to be loaded with synthetic dyes such as the textile, stationery, cosmetic, food, and also pharmaceutical industries. The penitential adsorbing of two dyes: methylene blue (BM) and malachite green (GM) was studied on this clay. Firstly, this clay was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis and X-ray fluorescence analysis. And on the other hand, Effect of different parameters on adsorption kinetics has been studied, such as contact time, initial dye concentration, pH, salinity and temperature. Adsorption tests results showed that equilibrium was established after 30 min and the adsorption of the two dyes depends on the initial dye concentration and the pH. The results showed was the adsorption of the two dyes can be described by pseudo-second-order kinetics. The results indicate also that the process is a spontaneous endothermic physisorption characterized by disorder of the environment. This study shows that this raw, abundant and low-cost natural illitic clay can be valorized and exploited to treat effluents loaded with synthetic dyes.","PeriodicalId":505470,"journal":{"name":"Applied Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of an abundant illitic clay from the Safi region in Morocco and its exploitation in the treatment of industrial effluents loaded with synthetic dyes\",\"authors\":\"Chaimaa Essiber, S. Akazdama, Bouchaib Bahlaouan, Said ElAntri, Ghita RadiBenjelloun, N. Boutaleb, Mohamed Bennani\",\"doi\":\"10.59429/ace.v7i2.2033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work is to valorize abundant illitic clay from Morocco in the treatment of industrial effluents likely to be loaded with synthetic dyes such as the textile, stationery, cosmetic, food, and also pharmaceutical industries. The penitential adsorbing of two dyes: methylene blue (BM) and malachite green (GM) was studied on this clay. Firstly, this clay was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis and X-ray fluorescence analysis. And on the other hand, Effect of different parameters on adsorption kinetics has been studied, such as contact time, initial dye concentration, pH, salinity and temperature. Adsorption tests results showed that equilibrium was established after 30 min and the adsorption of the two dyes depends on the initial dye concentration and the pH. The results showed was the adsorption of the two dyes can be described by pseudo-second-order kinetics. The results indicate also that the process is a spontaneous endothermic physisorption characterized by disorder of the environment. This study shows that this raw, abundant and low-cost natural illitic clay can be valorized and exploited to treat effluents loaded with synthetic dyes.\",\"PeriodicalId\":505470,\"journal\":{\"name\":\"Applied Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59429/ace.v7i2.2033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59429/ace.v7i2.2033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
这项工作的目的是将摩洛哥丰富的伊利石粘土用于处理可能含有合成染料的工业废水,如纺织、文具、化妆品、食品和制药行业。我们研究了这种粘土对亚甲蓝(BM)和孔雀石绿(GM)这两种染料的吸附能力。首先,通过扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)、X 射线衍射(XRD)分析和 X 射线荧光分析对这种粘土进行了表征。另一方面,研究了不同参数对吸附动力学的影响,如接触时间、初始染料浓度、pH 值、盐度和温度。吸附试验结果表明,30 分钟后达到平衡,两种染料的吸附量取决于初始染料浓度和 pH 值。结果表明,这两种染料的吸附可以用假二阶动力学来描述。结果还表明,该过程是一个自发的内热物理吸附过程,其特点是环境的无序性。这项研究表明,这种原料丰富、成本低廉的天然伊利石粘土可用于处理含有合成染料的污水。
Characterization of an abundant illitic clay from the Safi region in Morocco and its exploitation in the treatment of industrial effluents loaded with synthetic dyes
The objective of this work is to valorize abundant illitic clay from Morocco in the treatment of industrial effluents likely to be loaded with synthetic dyes such as the textile, stationery, cosmetic, food, and also pharmaceutical industries. The penitential adsorbing of two dyes: methylene blue (BM) and malachite green (GM) was studied on this clay. Firstly, this clay was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis and X-ray fluorescence analysis. And on the other hand, Effect of different parameters on adsorption kinetics has been studied, such as contact time, initial dye concentration, pH, salinity and temperature. Adsorption tests results showed that equilibrium was established after 30 min and the adsorption of the two dyes depends on the initial dye concentration and the pH. The results showed was the adsorption of the two dyes can be described by pseudo-second-order kinetics. The results indicate also that the process is a spontaneous endothermic physisorption characterized by disorder of the environment. This study shows that this raw, abundant and low-cost natural illitic clay can be valorized and exploited to treat effluents loaded with synthetic dyes.