基于机器学习的嘧啶化合物腐蚀抑制效率预测:线性和非线性算法的比较研究

Wise Herowati, Wahyu Aji Eko Prabowo, Muhamad Akrom, T. Sutojo, Noor Ageng Setiyanto, Achmad Wahid Kurniawan, Novianto Nur Hidayat, S. Rustad
{"title":"基于机器学习的嘧啶化合物腐蚀抑制效率预测:线性和非线性算法的比较研究","authors":"Wise Herowati, Wahyu Aji Eko Prabowo, Muhamad Akrom, T. Sutojo, Noor Ageng Setiyanto, Achmad Wahid Kurniawan, Novianto Nur Hidayat, S. Rustad","doi":"10.18502/keg.v6i1.15350","DOIUrl":null,"url":null,"abstract":"The corrosion of materials poses a significant challenge in various industries, leading to substantial economic impacts. In this context, pyrimidine compounds emerge as promising, non-toxic, cost-effective, and versatile corrosion inhibitors. However, conventional methods for identifying such inhibitors are typically time-consuming, expensive, and labor-intensive. Addressing this challenge, our study leverages machine learning (ML) to predict pyrimidine compounds corrosion inhibition efficiency (CIE). Using a quantitative structure-property relationship (QSPR) model, we compared 14 linear and 12 non-linear ML algorithms to identify the most accurate predictor of CIE. The bagging regressor model demonstrated superior performance, achieving a root mean square error (RMSE) of 5.38, a mean square error (MSE) of 28.93, a mean absolute error (MAE) of 4.23, and a mean absolute percentage error (MAPE) of 0.05 in predicting the CIE values for pyrimidine compounds. This research marks a significant advancement in corrosion science, offering a novel and efficient ML-based approach as an alternative to traditional experimental methods. It shows that machine learning can quickly and accurately determine how well organic chemical inhibitors like pyrimidine stop material corrosion. This method gives the industry a new perspective and a workable solution to a problem that has existed for a long time. \nKeywords: machine learning, corrosion inhibition, pyrimidine, QSPR model, predictive analysis","PeriodicalId":106635,"journal":{"name":"KnE Engineering","volume":"39 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Corrosion Inhibition Efficiency Based on Machine Learning for Pyrimidine Compounds: A Comparative Study of Linear and Non-linear Algorithms\",\"authors\":\"Wise Herowati, Wahyu Aji Eko Prabowo, Muhamad Akrom, T. Sutojo, Noor Ageng Setiyanto, Achmad Wahid Kurniawan, Novianto Nur Hidayat, S. Rustad\",\"doi\":\"10.18502/keg.v6i1.15350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The corrosion of materials poses a significant challenge in various industries, leading to substantial economic impacts. In this context, pyrimidine compounds emerge as promising, non-toxic, cost-effective, and versatile corrosion inhibitors. However, conventional methods for identifying such inhibitors are typically time-consuming, expensive, and labor-intensive. Addressing this challenge, our study leverages machine learning (ML) to predict pyrimidine compounds corrosion inhibition efficiency (CIE). Using a quantitative structure-property relationship (QSPR) model, we compared 14 linear and 12 non-linear ML algorithms to identify the most accurate predictor of CIE. The bagging regressor model demonstrated superior performance, achieving a root mean square error (RMSE) of 5.38, a mean square error (MSE) of 28.93, a mean absolute error (MAE) of 4.23, and a mean absolute percentage error (MAPE) of 0.05 in predicting the CIE values for pyrimidine compounds. This research marks a significant advancement in corrosion science, offering a novel and efficient ML-based approach as an alternative to traditional experimental methods. It shows that machine learning can quickly and accurately determine how well organic chemical inhibitors like pyrimidine stop material corrosion. This method gives the industry a new perspective and a workable solution to a problem that has existed for a long time. \\nKeywords: machine learning, corrosion inhibition, pyrimidine, QSPR model, predictive analysis\",\"PeriodicalId\":106635,\"journal\":{\"name\":\"KnE Engineering\",\"volume\":\"39 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KnE Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/keg.v6i1.15350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KnE Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/keg.v6i1.15350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

材料腐蚀是各行各业面临的一项重大挑战,会对经济产生重大影响。在这种情况下,嘧啶化合物成为一种前景广阔、无毒、成本效益高且用途广泛的腐蚀抑制剂。然而,鉴定此类抑制剂的传统方法通常耗时、昂贵且劳动密集。为了应对这一挑战,我们的研究利用机器学习(ML)来预测嘧啶化合物的缓蚀效率(CIE)。利用定量结构-性质关系(QSPR)模型,我们比较了 14 种线性和 12 种非线性 ML 算法,以确定最准确的 CIE 预测因子。在预测嘧啶化合物的 CIE 值时,袋化回归模型表现出卓越的性能,均方根误差 (RMSE) 为 5.38,均方误差 (MSE) 为 28.93,平均绝对误差 (MAE) 为 4.23,平均绝对百分比误差 (MAPE) 为 0.05。这项研究标志着腐蚀科学的重大进展,提供了一种新颖高效的基于 ML 的方法来替代传统的实验方法。它表明,机器学习可以快速、准确地确定嘧啶等有机化学抑制剂阻止材料腐蚀的效果。这种方法为业界提供了一个新的视角,并为一个存在已久的问题提供了可行的解决方案。关键词:机器学习、缓蚀剂、嘧啶、QSPR 模型、预测分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Corrosion Inhibition Efficiency Based on Machine Learning for Pyrimidine Compounds: A Comparative Study of Linear and Non-linear Algorithms
The corrosion of materials poses a significant challenge in various industries, leading to substantial economic impacts. In this context, pyrimidine compounds emerge as promising, non-toxic, cost-effective, and versatile corrosion inhibitors. However, conventional methods for identifying such inhibitors are typically time-consuming, expensive, and labor-intensive. Addressing this challenge, our study leverages machine learning (ML) to predict pyrimidine compounds corrosion inhibition efficiency (CIE). Using a quantitative structure-property relationship (QSPR) model, we compared 14 linear and 12 non-linear ML algorithms to identify the most accurate predictor of CIE. The bagging regressor model demonstrated superior performance, achieving a root mean square error (RMSE) of 5.38, a mean square error (MSE) of 28.93, a mean absolute error (MAE) of 4.23, and a mean absolute percentage error (MAPE) of 0.05 in predicting the CIE values for pyrimidine compounds. This research marks a significant advancement in corrosion science, offering a novel and efficient ML-based approach as an alternative to traditional experimental methods. It shows that machine learning can quickly and accurately determine how well organic chemical inhibitors like pyrimidine stop material corrosion. This method gives the industry a new perspective and a workable solution to a problem that has existed for a long time. Keywords: machine learning, corrosion inhibition, pyrimidine, QSPR model, predictive analysis
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proximate and Sensory Analysis of Homemade Kersen (Muntingia calabura) Jam with Stevia Extract Substitution Implementation of Simagin (Industrial Internship Information System) Based on a Website at Politeknik Negeri Media Kreatif PSDKU Makassar, , Indonesia Validity, Practicality and Effectiveness of E-module Teaching Materials in the Learning Subject Applied Mathematics in Students Analysis in Making Animation Movements Using Traditional Methods (Keyframe) and Motion Capture Methods Development of Basic Housekeeping Virtual Reality Learning Module For Students
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1