Brent P. Heerspink, Michael N. Fienen, Howard W. Reeves
{"title":"评估用于地下水污染物迁移建模的脉冲响应仿真器。","authors":"Brent P. Heerspink, Michael N. Fienen, Howard W. Reeves","doi":"10.1111/gwat.13405","DOIUrl":null,"url":null,"abstract":"<p>There is a significant need to develop decision support tools capable of delivering accurate representations of environmental conditions, such as ground and surface water solute concentrations, in a timely and computationally efficient manner. Such tools can be leveraged to assess a large number of potential management strategies for mitigating non-point source pollutants. Here, we assess the effectiveness of the impulse-response emulation approach to approximate process-based groundwater model estimates of solute transport from MODFLOW and MT3D over a wide range of model inputs and parameters, with the goal of assessing where in parameter space the assumptions underlying this emulation approach are valid. The impulse-response emulator was developed using the sensitivity analysis utilities in the PEST++ software suite and is capable of approximating MODFLOW/MT3D estimates of solute transport over a large portion of the parameter space tested, except in cases where the Courant number is above 0.5. Across all runs tested, the highest percent errors were at the plume fronts. These results suggest that the impulse-response approach may be suitable for emulation of solute transport models for a wide range of cases, except when high-resolution outputs are needed, or when very low concentrations at plume edges are of particular interest.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 6","pages":"945-956"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of an Impulse-Response Emulator for Groundwater Contaminant Transport Modeling\",\"authors\":\"Brent P. Heerspink, Michael N. Fienen, Howard W. Reeves\",\"doi\":\"10.1111/gwat.13405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is a significant need to develop decision support tools capable of delivering accurate representations of environmental conditions, such as ground and surface water solute concentrations, in a timely and computationally efficient manner. Such tools can be leveraged to assess a large number of potential management strategies for mitigating non-point source pollutants. Here, we assess the effectiveness of the impulse-response emulation approach to approximate process-based groundwater model estimates of solute transport from MODFLOW and MT3D over a wide range of model inputs and parameters, with the goal of assessing where in parameter space the assumptions underlying this emulation approach are valid. The impulse-response emulator was developed using the sensitivity analysis utilities in the PEST++ software suite and is capable of approximating MODFLOW/MT3D estimates of solute transport over a large portion of the parameter space tested, except in cases where the Courant number is above 0.5. Across all runs tested, the highest percent errors were at the plume fronts. These results suggest that the impulse-response approach may be suitable for emulation of solute transport models for a wide range of cases, except when high-resolution outputs are needed, or when very low concentrations at plume edges are of particular interest.</p>\",\"PeriodicalId\":12866,\"journal\":{\"name\":\"Groundwater\",\"volume\":\"62 6\",\"pages\":\"945-956\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groundwater\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gwat.13405\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwat.13405","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of an Impulse-Response Emulator for Groundwater Contaminant Transport Modeling
There is a significant need to develop decision support tools capable of delivering accurate representations of environmental conditions, such as ground and surface water solute concentrations, in a timely and computationally efficient manner. Such tools can be leveraged to assess a large number of potential management strategies for mitigating non-point source pollutants. Here, we assess the effectiveness of the impulse-response emulation approach to approximate process-based groundwater model estimates of solute transport from MODFLOW and MT3D over a wide range of model inputs and parameters, with the goal of assessing where in parameter space the assumptions underlying this emulation approach are valid. The impulse-response emulator was developed using the sensitivity analysis utilities in the PEST++ software suite and is capable of approximating MODFLOW/MT3D estimates of solute transport over a large portion of the parameter space tested, except in cases where the Courant number is above 0.5. Across all runs tested, the highest percent errors were at the plume fronts. These results suggest that the impulse-response approach may be suitable for emulation of solute transport models for a wide range of cases, except when high-resolution outputs are needed, or when very low concentrations at plume edges are of particular interest.
期刊介绍:
Ground Water is the leading international journal focused exclusively on ground water. Since 1963, Ground Water has published a dynamic mix of papers on topics related to ground water including ground water flow and well hydraulics, hydrogeochemistry and contaminant hydrogeology, application of geophysics, groundwater management and policy, and history of ground water hydrology. This is the journal you can count on to bring you the practical applications in ground water hydrology.