信号控制交叉口行人延迟与车辆排放权衡的多目标优化框架

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Arabian Journal for Science and Engineering Pub Date : 2024-03-27 DOI:10.1007/s13369-024-08898-7
Görkem Akyol, Sadullah Göncü, Mehmet Ali Silgu
{"title":"信号控制交叉口行人延迟与车辆排放权衡的多目标优化框架","authors":"Görkem Akyol,&nbsp;Sadullah Göncü,&nbsp;Mehmet Ali Silgu","doi":"10.1007/s13369-024-08898-7","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic congestion has several adverse effects on urban traffic networks. Increased travel times of vehicles, with the addition of excessive greenhouse emissions, can be listed as harmful effects. To address these issues, transportation engineers aim to reduce private car usage, reduce travel times through different control strategies, and mitigate harmful effects on urban networks. In this study, we introduce an innovative approach to optimizing traffic signal control settings. This methodology takes into account both pedestrian delays and vehicular emissions. Non-dominated sorting genetic algorithm-II and Multi-objective Artificial Bee Colony algorithms are adopted to solve the multi-objective optimization problem. The vehicular emissions are modeled through the MOVES3 emission model and integrated into the utilized microsimulation environment. Initially, the proposed framework is tested on a hypothetical test network, followed by a real-world case study. Results indicate a significant improvement in pedestrian delays and lower emissions.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"49 10","pages":"14117 - 14130"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13369-024-08898-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-objective Optimization Framework for Trade-Off Among Pedestrian Delays and Vehicular Emissions at Signal-Controlled Intersections\",\"authors\":\"Görkem Akyol,&nbsp;Sadullah Göncü,&nbsp;Mehmet Ali Silgu\",\"doi\":\"10.1007/s13369-024-08898-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traffic congestion has several adverse effects on urban traffic networks. Increased travel times of vehicles, with the addition of excessive greenhouse emissions, can be listed as harmful effects. To address these issues, transportation engineers aim to reduce private car usage, reduce travel times through different control strategies, and mitigate harmful effects on urban networks. In this study, we introduce an innovative approach to optimizing traffic signal control settings. This methodology takes into account both pedestrian delays and vehicular emissions. Non-dominated sorting genetic algorithm-II and Multi-objective Artificial Bee Colony algorithms are adopted to solve the multi-objective optimization problem. The vehicular emissions are modeled through the MOVES3 emission model and integrated into the utilized microsimulation environment. Initially, the proposed framework is tested on a hypothetical test network, followed by a real-world case study. Results indicate a significant improvement in pedestrian delays and lower emissions.</p></div>\",\"PeriodicalId\":54354,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":\"49 10\",\"pages\":\"14117 - 14130\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13369-024-08898-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13369-024-08898-7\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-08898-7","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

交通拥堵会对城市交通网络产生多种不利影响。车辆行驶时间的增加以及温室气体的过度排放都可列为有害影响。为了解决这些问题,交通工程师们希望减少私家车的使用,通过不同的控制策略缩短出行时间,减轻对城市交通网络的有害影响。在本研究中,我们介绍了一种优化交通信号控制设置的创新方法。该方法同时考虑了行人延迟和车辆排放。采用非支配排序遗传算法-II 和多目标人工蜂群算法来解决多目标优化问题。车辆排放通过 MOVES3 排放模型建模,并集成到所使用的微观模拟环境中。首先,在一个假设的测试网络上对所提出的框架进行了测试,然后进行了实际案例研究。结果表明,行人延迟得到明显改善,排放也有所降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective Optimization Framework for Trade-Off Among Pedestrian Delays and Vehicular Emissions at Signal-Controlled Intersections

Traffic congestion has several adverse effects on urban traffic networks. Increased travel times of vehicles, with the addition of excessive greenhouse emissions, can be listed as harmful effects. To address these issues, transportation engineers aim to reduce private car usage, reduce travel times through different control strategies, and mitigate harmful effects on urban networks. In this study, we introduce an innovative approach to optimizing traffic signal control settings. This methodology takes into account both pedestrian delays and vehicular emissions. Non-dominated sorting genetic algorithm-II and Multi-objective Artificial Bee Colony algorithms are adopted to solve the multi-objective optimization problem. The vehicular emissions are modeled through the MOVES3 emission model and integrated into the utilized microsimulation environment. Initially, the proposed framework is tested on a hypothetical test network, followed by a real-world case study. Results indicate a significant improvement in pedestrian delays and lower emissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering MULTIDISCIPLINARY SCIENCES-
CiteScore
5.70
自引率
3.40%
发文量
993
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
期刊最新文献
Phase Change Materials in High Heat Storage Application: A Review Review on Solid-State Narrow and Wide-Band Power Amplifier Comprehensive Overview on the Present State and Evolution of Global Warming, Climate Change, Greenhouse Gasses and Renewable Energy Rotor Temperature Prediction of PMSM Based on LSTM Neural Networks A Hierarchical Parametric and Non-Parametric Forecasting Source Models with Uncertainties: 10 Years Ahead Prediction of Sources for Electric Energy Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1