以数据和理论为导向,了解上皮-间充质转化的路径。

IF 2.4 4区 生物学 Q2 DEVELOPMENTAL BIOLOGY genesis Pub Date : 2024-03-29 DOI:10.1002/dvg.23591
Tian Hong, Jianhua Xing
{"title":"以数据和理论为导向,了解上皮-间充质转化的路径。","authors":"Tian Hong,&nbsp;Jianhua Xing","doi":"10.1002/dvg.23591","DOIUrl":null,"url":null,"abstract":"<p>Reversible transitions between epithelial and mesenchymal cell states are a crucial form of epithelial plasticity for development and disease progression. Recent experimental data and mechanistic models showed multiple intermediate epithelial–mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by complex gene regulatory networks. In this review, we summarize recent progress in quantifying EMT and characterizing EMT paths with computational methods and quantitative experiments including omics-level measurements. We provide perspectives on how these studies can help relating fundamental cell biology to physiological and pathological outcomes of EMT.</p>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23591","citationCount":"0","resultStr":"{\"title\":\"Data- and theory-driven approaches for understanding paths of epithelial–mesenchymal transition\",\"authors\":\"Tian Hong,&nbsp;Jianhua Xing\",\"doi\":\"10.1002/dvg.23591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reversible transitions between epithelial and mesenchymal cell states are a crucial form of epithelial plasticity for development and disease progression. Recent experimental data and mechanistic models showed multiple intermediate epithelial–mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by complex gene regulatory networks. In this review, we summarize recent progress in quantifying EMT and characterizing EMT paths with computational methods and quantitative experiments including omics-level measurements. We provide perspectives on how these studies can help relating fundamental cell biology to physiological and pathological outcomes of EMT.</p>\",\"PeriodicalId\":12718,\"journal\":{\"name\":\"genesis\",\"volume\":\"62 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23591\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"genesis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23591\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"genesis","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23591","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

上皮细胞和间充质细胞状态之间的可逆转变是上皮细胞可塑性的一种重要形式,对发育和疾病进展至关重要。最近的实验数据和机理模型显示了多种上皮-间质转化(EMT)中间状态,以及由复杂的基因调控网络支撑的EMT轨迹。在这篇综述中,我们总结了利用计算方法和定量实验(包括omics级测量)量化EMT和表征EMT路径的最新进展。我们将从不同角度探讨这些研究如何有助于将基础细胞生物学与 EMT 的生理和病理结果联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data- and theory-driven approaches for understanding paths of epithelial–mesenchymal transition

Reversible transitions between epithelial and mesenchymal cell states are a crucial form of epithelial plasticity for development and disease progression. Recent experimental data and mechanistic models showed multiple intermediate epithelial–mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by complex gene regulatory networks. In this review, we summarize recent progress in quantifying EMT and characterizing EMT paths with computational methods and quantitative experiments including omics-level measurements. We provide perspectives on how these studies can help relating fundamental cell biology to physiological and pathological outcomes of EMT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
genesis
genesis 生物-发育生物学
CiteScore
3.60
自引率
0.00%
发文量
40
审稿时长
6-12 weeks
期刊介绍: As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders. genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.
期刊最新文献
Unraveling the Mechanisms That Regulate Osteoclast Differentiation: A Review of Current Advances A New Targeted Transgenic Mouse Line for the Study of Protocadherin γC4 Issue Information Meet Our Editorial Board—Genesis. An Interview With, Susan Mackem, National Cancer Institute, Maryland, USA Meet Our Editorial Board—Genesis. An Interview With Thomas Schimmang, Institute for Biomedicine and Molecular Genetics, Valladolid, Spain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1