了解持续意向的对立力量:SEM-ANN 混合方法

Xiu-Ming Loh, Voon‐Hsien Lee, Lai-Ying Leong
{"title":"了解持续意向的对立力量:SEM-ANN 混合方法","authors":"Xiu-Ming Loh, Voon‐Hsien Lee, Lai-Ying Leong","doi":"10.1108/imds-03-2023-0144","DOIUrl":null,"url":null,"abstract":"PurposeThis study looks to understand the opposing forces that would influence continuance intention. This is significant as users will take into account the positive and negative use experiences in determining their continuance intention. Therefore, this study looks to highlight the opposing forces of users’ continuance intention by proposing the Expectation-Confirmation-Resistance Model (ECRM).Design/methodology/approachThrough an online survey, 411 responses were obtained from mobile payment users. Subsequently, a hybrid approach comprised of the Partial Least Squares-Structural Equation Modeling (PLS-SEM) and Artificial Neural Network (ANN) was utilized to analyze the data.FindingsThe results revealed that all hypotheses proposed in the ECRM are supported. More precisely, the facilitating and inhibiting variables were found to significantly affect continuance intention. In addition, the ECRM was revealed to possess superior explanatory power over the original model in predicting continuance intention.Originality/valueThis study successfully developed and validated the ECRM which captures both facilitators and inhibitors of continuance intention. Besides, the relevance and significance of users’ innovative resistance to continuance intention have been highlighted. Following this, effective business and research strategies can be developed by taking into account the opposing forces that affect users’ continuance intention.","PeriodicalId":508405,"journal":{"name":"Industrial Management & Data Systems","volume":"34 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the opposing forces of continuance intention: a hybrid SEM-ANN approach\",\"authors\":\"Xiu-Ming Loh, Voon‐Hsien Lee, Lai-Ying Leong\",\"doi\":\"10.1108/imds-03-2023-0144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis study looks to understand the opposing forces that would influence continuance intention. This is significant as users will take into account the positive and negative use experiences in determining their continuance intention. Therefore, this study looks to highlight the opposing forces of users’ continuance intention by proposing the Expectation-Confirmation-Resistance Model (ECRM).Design/methodology/approachThrough an online survey, 411 responses were obtained from mobile payment users. Subsequently, a hybrid approach comprised of the Partial Least Squares-Structural Equation Modeling (PLS-SEM) and Artificial Neural Network (ANN) was utilized to analyze the data.FindingsThe results revealed that all hypotheses proposed in the ECRM are supported. More precisely, the facilitating and inhibiting variables were found to significantly affect continuance intention. In addition, the ECRM was revealed to possess superior explanatory power over the original model in predicting continuance intention.Originality/valueThis study successfully developed and validated the ECRM which captures both facilitators and inhibitors of continuance intention. Besides, the relevance and significance of users’ innovative resistance to continuance intention have been highlighted. Following this, effective business and research strategies can be developed by taking into account the opposing forces that affect users’ continuance intention.\",\"PeriodicalId\":508405,\"journal\":{\"name\":\"Industrial Management & Data Systems\",\"volume\":\"34 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Management & Data Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/imds-03-2023-0144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Management & Data Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/imds-03-2023-0144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的 本研究旨在了解影响继续使用意向的对立力量。这一点非常重要,因为用户在决定其继续使用意向时会考虑到正面和负面的使用体验。因此,本研究希望通过提出期望-确认-阻力模型(ECRM)来强调影响用户继续使用意向的对立力量。结果结果显示,ECRM 提出的所有假设都得到了支持。更确切地说,促进变量和抑制变量对持续意向有显著影响。原创性/价值本研究成功开发并验证了 ECRM,该模型同时捕捉到了持续意向的促进因素和抑制因素。此外,研究还强调了用户的创新阻力与持续意向的相关性和重要性。因此,考虑到影响用户持续意向的对立力量,可以制定有效的商业和研究战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding the opposing forces of continuance intention: a hybrid SEM-ANN approach
PurposeThis study looks to understand the opposing forces that would influence continuance intention. This is significant as users will take into account the positive and negative use experiences in determining their continuance intention. Therefore, this study looks to highlight the opposing forces of users’ continuance intention by proposing the Expectation-Confirmation-Resistance Model (ECRM).Design/methodology/approachThrough an online survey, 411 responses were obtained from mobile payment users. Subsequently, a hybrid approach comprised of the Partial Least Squares-Structural Equation Modeling (PLS-SEM) and Artificial Neural Network (ANN) was utilized to analyze the data.FindingsThe results revealed that all hypotheses proposed in the ECRM are supported. More precisely, the facilitating and inhibiting variables were found to significantly affect continuance intention. In addition, the ECRM was revealed to possess superior explanatory power over the original model in predicting continuance intention.Originality/valueThis study successfully developed and validated the ECRM which captures both facilitators and inhibitors of continuance intention. Besides, the relevance and significance of users’ innovative resistance to continuance intention have been highlighted. Following this, effective business and research strategies can be developed by taking into account the opposing forces that affect users’ continuance intention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive vs transactional: how social media ads engage consumers with disparate regulatory orientation and lay rationalism Strategy for sustainable supply chain transformation: a resource orchestration perspective Spillover effects of online comments on high-involvement product sales: evidence from the Chinese automobile industry The impact of digital transformation on firm performance Value co-creation on social attachment toward social platforms: evidence from developing countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1