{"title":"月球原位大规模建造:巨岩凝固技术的定量评估","authors":"","doi":"10.1016/j.eng.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Lunar habitat construction is crucial for successful lunar exploration missions. Due to the limitations of transportation conditions, extensive global research has been conducted on lunar <em>in situ</em> material processing techniques in recent years. The aim of this paper is to provide a comprehensive review, precise classification, and quantitative evaluation of these approaches, focusing specifically on four main approaches: reaction solidification (RS), sintering/melting (SM), bonding solidification (BS), and confinement formation (CF). Eight key indicators have been identified for the construction of low-cost and high-performance systems to assess the feasibility of these methods: <em>in situ</em> material ratio, curing temperature, curing time, implementation conditions, compressive strength, tensile strength, curing dimensions, and environmental adaptability. The scoring thresholds are determined by comparing the construction requirements with the actual capabilities. Among the evaluated methods, regolith bagging has emerged as a promising option due to its high <em>in situ</em> material ratio, low time requirement, lack of high-temperature requirements, and minimal shortcomings, with only the compressive strength falling below the neutral score. The compressive strength still maintains a value of 2–3 MPa. The proposed construction scheme utilizing regolith bags offers numerous advantages, including rapid and large-scale construction, ensured tensile strength, and reduced reliance on equipment and energy. In this study, guidelines for evaluating regolith solidification techniques are provided, and directions for improvement are offered. The proposed lunar habitat design based on regolith bags is a practical reference for future research.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"39 ","pages":"Pages 204-221"},"PeriodicalIF":10.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924001449/pdfft?md5=c8f9f1d86945c9b911af13f22ab69910&pid=1-s2.0-S2095809924001449-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lunar In Situ Large-Scale Construction: Quantitative Evaluation of Regolith Solidification Techniques\",\"authors\":\"\",\"doi\":\"10.1016/j.eng.2024.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lunar habitat construction is crucial for successful lunar exploration missions. Due to the limitations of transportation conditions, extensive global research has been conducted on lunar <em>in situ</em> material processing techniques in recent years. The aim of this paper is to provide a comprehensive review, precise classification, and quantitative evaluation of these approaches, focusing specifically on four main approaches: reaction solidification (RS), sintering/melting (SM), bonding solidification (BS), and confinement formation (CF). Eight key indicators have been identified for the construction of low-cost and high-performance systems to assess the feasibility of these methods: <em>in situ</em> material ratio, curing temperature, curing time, implementation conditions, compressive strength, tensile strength, curing dimensions, and environmental adaptability. The scoring thresholds are determined by comparing the construction requirements with the actual capabilities. Among the evaluated methods, regolith bagging has emerged as a promising option due to its high <em>in situ</em> material ratio, low time requirement, lack of high-temperature requirements, and minimal shortcomings, with only the compressive strength falling below the neutral score. The compressive strength still maintains a value of 2–3 MPa. The proposed construction scheme utilizing regolith bags offers numerous advantages, including rapid and large-scale construction, ensured tensile strength, and reduced reliance on equipment and energy. In this study, guidelines for evaluating regolith solidification techniques are provided, and directions for improvement are offered. The proposed lunar habitat design based on regolith bags is a practical reference for future research.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"39 \",\"pages\":\"Pages 204-221\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095809924001449/pdfft?md5=c8f9f1d86945c9b911af13f22ab69910&pid=1-s2.0-S2095809924001449-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924001449\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924001449","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Lunar In Situ Large-Scale Construction: Quantitative Evaluation of Regolith Solidification Techniques
Lunar habitat construction is crucial for successful lunar exploration missions. Due to the limitations of transportation conditions, extensive global research has been conducted on lunar in situ material processing techniques in recent years. The aim of this paper is to provide a comprehensive review, precise classification, and quantitative evaluation of these approaches, focusing specifically on four main approaches: reaction solidification (RS), sintering/melting (SM), bonding solidification (BS), and confinement formation (CF). Eight key indicators have been identified for the construction of low-cost and high-performance systems to assess the feasibility of these methods: in situ material ratio, curing temperature, curing time, implementation conditions, compressive strength, tensile strength, curing dimensions, and environmental adaptability. The scoring thresholds are determined by comparing the construction requirements with the actual capabilities. Among the evaluated methods, regolith bagging has emerged as a promising option due to its high in situ material ratio, low time requirement, lack of high-temperature requirements, and minimal shortcomings, with only the compressive strength falling below the neutral score. The compressive strength still maintains a value of 2–3 MPa. The proposed construction scheme utilizing regolith bags offers numerous advantages, including rapid and large-scale construction, ensured tensile strength, and reduced reliance on equipment and energy. In this study, guidelines for evaluating regolith solidification techniques are provided, and directions for improvement are offered. The proposed lunar habitat design based on regolith bags is a practical reference for future research.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.