{"title":"用于组织工程的微流体电喷雾仿红细胞颗粒","authors":"","doi":"10.1016/j.eng.2023.08.022","DOIUrl":null,"url":null,"abstract":"<div><p>Microparticles have demonstrated value for regenerative medicine. Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration. Here, inspired by erythrocytes-associated self-repairing process in damaged tissue, we present novel biomimetic erythrocyte-like microparticles (ELMPs). These ELMPs, which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus, hemoglobin, and growth factors (GFs), are generated by using a microfluidic electrospray. As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen, they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion, stimulating angiogenesis, and adjusting the release profile of cargoes. Based on these features, we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration. Thus, we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"40 ","pages":"Pages 78-86"},"PeriodicalIF":10.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924001474/pdfft?md5=0d6c85babd7e89d678b5e9d3625f1ebc&pid=1-s2.0-S2095809924001474-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Erythrocyte-Like Particles from Microfluidic Electrospray for Tissue Engineering\",\"authors\":\"\",\"doi\":\"10.1016/j.eng.2023.08.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microparticles have demonstrated value for regenerative medicine. Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration. Here, inspired by erythrocytes-associated self-repairing process in damaged tissue, we present novel biomimetic erythrocyte-like microparticles (ELMPs). These ELMPs, which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus, hemoglobin, and growth factors (GFs), are generated by using a microfluidic electrospray. As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen, they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion, stimulating angiogenesis, and adjusting the release profile of cargoes. Based on these features, we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration. Thus, we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"40 \",\"pages\":\"Pages 78-86\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095809924001474/pdfft?md5=0d6c85babd7e89d678b5e9d3625f1ebc&pid=1-s2.0-S2095809924001474-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924001474\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924001474","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Biomimetic Erythrocyte-Like Particles from Microfluidic Electrospray for Tissue Engineering
Microparticles have demonstrated value for regenerative medicine. Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration. Here, inspired by erythrocytes-associated self-repairing process in damaged tissue, we present novel biomimetic erythrocyte-like microparticles (ELMPs). These ELMPs, which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus, hemoglobin, and growth factors (GFs), are generated by using a microfluidic electrospray. As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen, they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion, stimulating angiogenesis, and adjusting the release profile of cargoes. Based on these features, we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration. Thus, we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.