利用选择性激光熔融 (SLM) 技术,通过用金属聚合物加固薄壁壳体,降低三维金属打印在钻体制造中的成本

IF 3.3 Q2 ENGINEERING, MANUFACTURING Journal of Manufacturing and Materials Processing Pub Date : 2024-02-21 DOI:10.3390/jmmp8020044
Nickolay S Lubimyi, M. Chepchurov, A. Polshin, Michael D. Gerasimov, Boris S. Chetverikov, Anastasia Chetverikova, A. Tikhonov, Ardalion Maltsev
{"title":"利用选择性激光熔融 (SLM) 技术,通过用金属聚合物加固薄壁壳体,降低三维金属打印在钻体制造中的成本","authors":"Nickolay S Lubimyi, M. Chepchurov, A. Polshin, Michael D. Gerasimov, Boris S. Chetverikov, Anastasia Chetverikova, A. Tikhonov, Ardalion Maltsev","doi":"10.3390/jmmp8020044","DOIUrl":null,"url":null,"abstract":"This article describes the technology for manufacturing a metal composite structure of a metal-cutting tool body. The main problem with using metal 3D-printing is its prohibitively high cost. The initial data for carrying out finite element calculations are presented, in particular, the calculation and justification of the selected loads on the drill body arising from metal-cutting forces. The described methodology for designing a digital model of a metal-cutting tool for the purpose of its further production using SLM 3D metal printing methods facilitates the procurement of a digital model characterized by a reduced weight and volume of material. The described design technology involves the production of a thin-walled outer shell that forms the external technological surfaces necessary for the drill body, as well as internal structural elements formed as a result of topological optimization of the product shape. Much attention in this article is paid to the description of the technology for filling internal cavities with a viscous metal polymer, formed as a result of the topological optimization of the original model. Due to this design approach, it is possible to reduce the volume of 3D metal printing by 32%, which amounts to more than USD 135 in value terms.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing the Cost of 3D Metal Printing Using Selective Laser Melting (SLM) Technology in the Manufacture of a Drill Body by Reinforcing Thin-Walled Shell Forms with Metal-Polymers\",\"authors\":\"Nickolay S Lubimyi, M. Chepchurov, A. Polshin, Michael D. Gerasimov, Boris S. Chetverikov, Anastasia Chetverikova, A. Tikhonov, Ardalion Maltsev\",\"doi\":\"10.3390/jmmp8020044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes the technology for manufacturing a metal composite structure of a metal-cutting tool body. The main problem with using metal 3D-printing is its prohibitively high cost. The initial data for carrying out finite element calculations are presented, in particular, the calculation and justification of the selected loads on the drill body arising from metal-cutting forces. The described methodology for designing a digital model of a metal-cutting tool for the purpose of its further production using SLM 3D metal printing methods facilitates the procurement of a digital model characterized by a reduced weight and volume of material. The described design technology involves the production of a thin-walled outer shell that forms the external technological surfaces necessary for the drill body, as well as internal structural elements formed as a result of topological optimization of the product shape. Much attention in this article is paid to the description of the technology for filling internal cavities with a viscous metal polymer, formed as a result of the topological optimization of the original model. Due to this design approach, it is possible to reduce the volume of 3D metal printing by 32%, which amounts to more than USD 135 in value terms.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp8020044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8020044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了金属切削工具本体的金属复合结构制造技术。使用金属三维打印技术的主要问题是成本过高。文章介绍了进行有限元计算的初始数据,特别是金属切削力对钻体产生的选定载荷的计算和论证。所述方法用于设计金属切削工具的数字模型,以便使用 SLM 3D 金属打印方法进一步生产该工具。所述设计技术包括生产薄壁外壳,形成钻头主体所需的外部技术表面,以及产品形状拓扑优化后形成的内部结构元件。本文将重点介绍用粘性金属聚合物填充内部空腔的技术,该技术是对原始模型进行拓扑优化的结果。由于采用了这种设计方法,三维金属打印的体积可以减少 32%,按价值计算超过 135 美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing the Cost of 3D Metal Printing Using Selective Laser Melting (SLM) Technology in the Manufacture of a Drill Body by Reinforcing Thin-Walled Shell Forms with Metal-Polymers
This article describes the technology for manufacturing a metal composite structure of a metal-cutting tool body. The main problem with using metal 3D-printing is its prohibitively high cost. The initial data for carrying out finite element calculations are presented, in particular, the calculation and justification of the selected loads on the drill body arising from metal-cutting forces. The described methodology for designing a digital model of a metal-cutting tool for the purpose of its further production using SLM 3D metal printing methods facilitates the procurement of a digital model characterized by a reduced weight and volume of material. The described design technology involves the production of a thin-walled outer shell that forms the external technological surfaces necessary for the drill body, as well as internal structural elements formed as a result of topological optimization of the product shape. Much attention in this article is paid to the description of the technology for filling internal cavities with a viscous metal polymer, formed as a result of the topological optimization of the original model. Due to this design approach, it is possible to reduce the volume of 3D metal printing by 32%, which amounts to more than USD 135 in value terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
期刊最新文献
Efficiency and Microstructural Forecasts in Friction Stir Extrusion Compared to Traditional Hot Extrusion of AA6061 A New Grinding Wheel Design with a 3D Internal Cooling Structure System Holistic Framework for the Implementation and Validation of PBF-LB/M with Risk Management for Individual Products through Predictive Process Stability Evaluation of Material Extrusion Printed PEEK Mold Inserts for Usage in Ceramic Injection Molding Material Parameter Identification for a Stress-State-Dependent Ductile Damage and Failure Model Applied to Clinch Joining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1